

Fundación Centro Nacional del Medio Ambiente CENMA - Universidad de Chile

INFORME FINAL LMAA-006-UMET-002-2007

"Desarrollo y aplicación de un modelo de pronóstico de calidad de aire (MP10) para Temuco y Padre Las Casas"

PREPARADO POR:

LABORATORIO DE MODELACIÓN Y ANÁLISIS ATMOSFÉRICO DEL CENTRO NACIONAL DEL MEDIO AMBIENTE DE LA UNIVERSIDAD DE CHILE

PARA:

COMISIÓN NACIONAL DEL MEDIO AMBIENTE REGIÓN DE LA ARAUCANÍA

ABRIL 2007

© Centro Nacional del Medio Ambiente Año 2007

"Desarrollo y aplicación de un modelo de pronóstico de calidad de aire (MP10) para Temuco y Padre Las Casas"

Informe Final LMAA-006-UMET-002-2007

Obra protegida por la Ley 17.336 sobre Propiedad Intelectual

Ninguna parte de este Informe puede ser reproducido, trasmitido o almacenado, en cualquier forma o por cualquier medio, sin permiso expreso de CENMA, o de la Institución contratante del estudio.

Fundación CENMA Prof. Víctor Pérez V, Presidente Prof. Eugenio Figueroa B, Director Ejecutivo

Informe preparado por el Laboratorio de Modelación y Análisis Atmosférico
Manuel Merino Th, Jefe del Laboratorio de Modelación y Análisis Atmosférico, Jefe del Estudio
Gerardo Alvarado Z, Ingeniero, Encargado de Estudios y Calidad de Aire
Andrés Cabello B, Ingeniero, Experto en Modelación Numérica
Marcelo Araya M, Ingeniero, Supervisor de la Unidad de Instrumentación
Eugenio Campos L, Meteorólogo Senior
Maureen Amín D, Meteorólogo
Andrea Rivera G, Meteorólogo
Leopoldo Ponce B, Meteorólogo
Nelson Varas O, Meteorólogo
Isabel Leiva C, Ingeniero, Supervisora de terreno
Javier Vargas V, Técnico Instrumentista
Claudio Castillo A, Técnico Instrumentista

Fundación CENMA Av. Larraín 9975, La Reina, Santiago, Chile Teléfono: (56-2) 299 4100, Fax: (56-2) 275 1688

Introducción

El presente documento corresponde al Informe Final preparado por el Laboratorio de Modelación y Análisis Atmosférico del Centro Nacional del Medio Ambiente, en el marco de la ejecución del Estudio "Desarrollo y aplicación de un modelo de pronóstico de calidad de aire (MP10) para Temuco y Padre Las Casas", solicitada por la Comisión Nacional del Medio Ambiente, Región de la Araucanía.

CONTENIDO

1	ANTECEDENTES GENERALES	. 1
2	OBJETIVOS DEL ESTUDIO	. 3
	ANÁLISIS DE LOS PATRONES METEOROLÓGICOS DE ESCALAS SINÓPTICA, GIONAL Y LOCAL QUE MODULAN LOS EPISODIOS CRÍTICOS DE CONTAMINACIÓN MOSFÉRICA EN TEMUCO Y PADRE LAS CASAS	. 5
	.1 DESCRIPCIÓN DEL COMPORTAMIENTO METEOROLÓGICO Y CALIDAD DE AIRE EN EMUCO	5
	.2 CONDICIONES METEOROLÓGICAS ASOCIADAS A EPISODIOS	
	.3 ESTABILIDAD A NIVELES BAJOS	
	.4 CLASIFICACIÓN DE TIPOS DE EPISODIOS EN TEMUCO	
3.	.5 CARACTERÍSTICAS GENERALES DE LOS TIPOS DE EPISODIOS	
	3.5.1 Episodios A (t)	
	3.5.2 Episodios BPF (t)	
_	3.5.3 Episodios A (t)-N (t)	. 7
_	.6 ANÁLISIS DE RELACIONES ENTRE CONCENTRACIONES DE MP10 Y VARIABLES	_
	ETEOROLÓGICAS DE ESCALAS REGIONAL Y LOCAL	. 8
3.	.7 IMPLEMENTACIÓN DEL PMCA	12
CON	SADO EN RELACIONES ESTADÍSTICAS ENTRE VARIABLES METEOROLÓGICAS Y NTAMINACIÓN ATMOSFÉRICA	
	.2 DEFINICIÓN DE VARIABLES Y CONSTRUCCIÓN DE BASES DE DATOS	
т.	4.2.1 Concentraciones de MP10	
	4.2.2 Variables meteorológicas de superficie	
	4.2.3 Índice de estacionalidad	17
	4.2.4 Descripción de la Base de Datos	
4.	.3 ANÁLISIS DE RELACIONES ENTRE VARIABLES METEOROLÓGICAS	de
	4.3.2 Resultados del análisis de componentes principales para variables meteorológicas daltura 21	
	.4 ECUACIONES DE PRONÓSTICO PARA CONCENTRACIONES DE MP10 DESARROLLADAS	
M	EDIANTE REGRESIÓN LINEAL MÚLTIPLE	
	4.4.1 Consideraciones generales	26 26
	4.4.2 Descripción de las ecuaciones para Padre Las Casas y Las Encinas	
	4.4.3 Evaluación de las ecuaciones de pronóstico para promedios móviles máximos de 24 horas en Las Encinas y Padre Las Casas	
	4.4.4 Resultados ecuaciones de pronóstico MP10 máximo móvil 24h para la estación de	2 ک
	Padre Las Casas	35
	4.4.5 Resultados ecuaciones de pronóstico MP10 máximo móvil 24h para la estación de	
	Las Encinas.	41
	4.4.6 Resultado de ecuaciones experimentales de pronóstico de MP10 para promedio	
	menores a 24 horas	52

5	CONCLUSIONES Y RECOMENDACIONES	57
6	REFERENCIAS	59
7	ANEXOS	60
	7.1 DEFINICIÓN CATEGORÍAS PMCA	60
	7.2 CONFIGURACIÓN A (T)	69
	7.2.1 Episodio 12-14 Junio 2002	
	7.2.2 Situación meteorológica previa al evento	69
	7.3 DESCRIPCIÓN BASE DE DATOS	77
	7.3.1 Nomenclatura usada en los nombres de las variables	77
	7.3.2 Variables incluidas en la Base de Datos de Trabajo	78
	7.3.3 Estadística descriptiva de las variables usadas en el estudio	87
	7.4 ESTACIÓN METEOROLÓGICA EN ALTURA	94
	7.5 DISEÑO DE MECANISMO DE ENTREGA DE INFORMACIÓN A CONAMA REGIÓN DE	
	ARAUCANÍA	98
	7.5.1 Formatos sugerentes para reportes del sistema de pronóstico	

1 Antecedentes Generales

El 02 de Marzo del año 2005 (DS Nº 35/05), las comunas de Temuco y Padre las Casas fueron declaradas zonas saturadas por MP10 como concentración de 24 horas. Por tal motivo el 28 de Julio del 2005 (Resolución exenta Nº 1194) se dio inicio a la estructuración del Plan de descontaminación de dichas comunas, el cual deberá contemplar el diseño de las medidas tendientes a recuperar la calidad del aire.

El procedimiento para la elaboración y contenidos de un Plan de Descontaminación establece que debe contar con un Plan Operacional de Episodios Críticos. El DS N°94/95 del MINSEGPRES, en su artículo 15, en relación con los contenidos de un PDA, indica los instrumentos de gestión ambiental que se usarán para cumplir sus objetivos. En especial, señala que el Plan considerará la formulación de un Plan Operacional para enfrentar los Episodios Críticos de contaminación, la ejecución de acciones de cooperación pública, programas de educación y difusión ambiental.

De acuerdo a la normativa vigente² los criterios para decretar un episodio crítico por material particulado respirable (MP10), son determinados a través del un Índice de Calidad de Aire por Partículas (ICAP). Este mismo decreto establece la Norma Primaria de Calidad de Aire para MP10 y especifica los requerimientos que debe satisfacer una metodología de pronóstico para predecir episodios críticos de contaminación atmosférica.

Un modelo de pronóstico de calidad del aire por MP10, determina los niveles previstos de este contaminante para el día siguiente, o días subsiguientes. Los resultados entregados van normalmente acompañados de una opinión experta.

La declaración de un episodio por parte de la autoridad no implica necesariamente que el aire haya empeorado al momento de tomarse la medida, sino que el modelo de pronóstico y la opinión de los expertos indican que hay una alta probabilidad de que la calidad de aire empeore, y alcance niveles de alerta o preemergencia. Es decir, la declaración de episodios y la aplicación de medidas de mitigación e información a la ciudadanía se decretan normalmente en forma preventiva, buscando, evitar que se alcancen los niveles pronosticados, o reducir al menos los niveles de MP10, protegiendo así la salud de la población.

Para una adecuada gestión de episodios se requiere contar con un modelo de pronóstico validado y contar con información en línea de mediciones de calidad de aire y parámetros meteorológicos. Se necesita de especialistas expertos que efectúen un seguimiento diario y continuo de la evolución de los diferentes parámetros, determinen el valor pronosticado y

-

¹ D.S. N°94/95 del MINSEGRES

² D.S. N°59/1998 del MINSEGRES

observado del índice de Potencial Meteorológico de Contaminación Atmosférica (PMCA), y entreguen además una opinión respecto a los resultados arrojados por el modelo.

Actualmente, se cuenta con estaciones de monitoreo de MP10 en Temuco (Estación las Encinas) y en Padre Las Casas, con sus correspondientes estaciones meteorológicas. Ambas estaciones son administradas por la Seremi de Salud Araucanía y operadas por el Centro Nacional del Medio Ambiente. Los datos entregados por estas estaciones, más la operación de una estación meteorológica de altura que CENMA a requerimiento de CONAMA IX Región instaló sobre el Cerro Oyama, apoyarán el sistema de pronóstico de calidad de aire, al permitir determinar las condiciones de estabilidad a niveles bajos, cercanos a la superficie. El gradiente térmico vertical será una variable a considerar en el reanálisis que se efectuará al final de la temporada Mayo-Octubre 2007, conducente a la revisión y mejoramiento del modelo de calidad de aire.

Para implementar un adecuado Plan Operacional ante episodios críticos que permita tomar medidas eficientes y oportunas que apunten a proteger la salud de la población, reduciendo la exposición de ésta a altos niveles de contaminación por MP10, es necesario considerar tres líneas de acción: la implementación de un modelo de calidad de aire, que permita predecir altas concentraciones de MP10, la implementación de medidas de mitigación y la entrega de información y recomendaciones a la población.

El propósito fundamental de la Gestión de Episodios es prevenir el efecto adverso de los contaminantes en la salud de la población y aplicar eficazmente las medidas apuntando a reducir las concentraciones de contaminantes hasta niveles aceptables. Lo anterior implica establecer mecanismos eficientes para mantener a la ciudadanía debidamente informada. La Dirección Regional de la Comisión Nacional del Medio Ambiente de la Región de La Araucanía, requiere contar con información confiable, certera y oportuna de pronósticos de calidad del aire a fin de dar respuesta a estas demandas.

El diseño sugerente de la entrega de información a CONAMA IX región (Reporte preliminar, Modelo Calidad de Aire y Reporte definitivo) se muestra en Anexos (7.3).

Por otro lado cabe destacar que actualmente no existen en la región las capacidades técnicas para realizar este tipo de pronóstico, razón por la cual el programa también deberá contemplar la capacitación de profesionales de las universidades regionales, SEREMI de Salud y CONAMA.

Para dar cumplimiento a la implementación de un modelo de calidad de aire que permita predecir altas concentraciones de MP10, en octubre de 2006, se suscribió un contrato entre CONAMA IX Región y CENMA, para el desarrollo del estudio "Desarrollo y aplicación de un modelo de pronóstico de calidad de aire (MP10) para Temuco y Padre Las Casas". Este informe corresponde al Informe Final de dicho estudio, el cual entrega los antecedentes para la creación del modelo predictivo de calidad de aire para estas comunas.

2 Objetivos del estudio

La generación de ecuaciones de pronóstico de MP10 es una herramienta de ayuda para anticiparse a la ocurrencia de altas concentraciones de material particulado respirable, y de esta manera dar aviso oportuno a la población sobre los episodios de contaminación. Por otra parte, basada en el pronóstico, la autoridad está en condiciones de tomar medidas de mitigación que reduzcan las emisiones en días de mala ventilación.

El propósito de este estudio es generar ecuaciones de pronóstico para MP10 que incluyan el Potencial Meteorológico de Contaminación Atmosférica , en adelante PMCA, ya que este índice ayuda a consolidar la modelación estadística, integrando el pronóstico de las condiciones meteorológicas asociadas a calidad de aire. Además el PMCA tiene la virtud de flexibilizar el ajuste de las ecuaciones en caso de que se presenten fenómenos meteorológicos de rápido desarrollo temporal y que puedan determinar un cambio abrupto de las condiciones de ventilación. Tal condición sólo puede ser prevista por la opinión de meteorólogos expertos.

Los ajustes de las ecuaciones de pronóstico en base a promedios móviles, es una de las técnicas estadísticas más usadas para capturar los eventos de altas concentraciones de material particulado. Sin embargo, estos métodos estadísticos tienden a suavizar y desfasar los valores reales de contaminación observado en la atmósfera (desfase entre el promedio móvil y las concentraciones horarias, traduciéndose en tardía respuesta del promedio móvil para detectar el inicio y término de un evento). Pese a esto, el ajuste de ecuaciones utilizando promedios móviles sigue siendo una técnica vigente en muchos países, por el desafío que implica la implementación de un modelo de pronóstico que logre capturar los valores horarios o reales de alta contaminación, especialmente cuando se usa la metodología de ecuaciones de regresión lineal múltiple.

En resumen, los objetivos de este estudio son:

Objetivo general

Diseñar un Modelo de Pronóstico de calidad del aire para Material Particulado Respirable (MP10) para las comunas de Temuco y Padre Las Casas.

Objetivos específicos

- Contar con un análisis de los patrones meteorológicos de escalas sinóptica, regional y local que modulan los episodios críticos de contaminación atmosférica en Temuco y Padre Las Casas, que permitan establecer un índice de Potencial Meteorológico de Contaminación Atmosférica (PMCA)
- Desarrollar un modelo de pronóstico de niveles de calidad de aire para MP10, basado en relaciones estadísticas entre variables meteorológicas y contaminación atmosférica

Adicionalmente se plantearon 2 objetivos específicos:

- Instalar y poner en marcha una estación meteorológica en altura.
- Capacitar a actores locales en el manejo e interpretación del modelo.

Para el logro de estos objetivos se consideró instalar una estación meteorológica simple en el Cerro Ñielol o en el Cerro Conun-hueno y la realización de 2 jornadas de capacitación.

Por motivos de carácter administrativo y la dificultad de obtener el permiso de instalación en los cerros mencionados, se optó por instalar la estación de altura en una torre ubicada sobre el cerro Oyama.

3 Análisis de los patrones meteorológicos de escalas sinóptica, regional y local que modulan los episodios críticos de contaminación atmosférica en Temuco y Padre Las Casas

3.1 Descripción del comportamiento meteorológico y calidad de aire en Temuco

Durante el período Otoño-Invierno, la característica sinóptica predominante en la Zona Sur de Chile es la incursión de masas de aire polar acompañando el paso de sistemas frontales, que irrumpen con frecuencia variable. La Alta Semipermanente del Pacífico Sur modifica transitoriamente este esquema cuando alcanza latitudes mayores, ejerciendo una acción de bloqueo al paso de los frentes. El paso de vaguadas y dorsales en la troposfera media, modulan en gran medida las condiciones meteorológicas que se registran en superficie.

3.2 Condiciones meteorológicas asociadas a episodios

Del análisis de episodios registrados en Temuco entre 2000 y 2006, se constató que presentan similitudes importantes respecto a las condiciones que, a escala sinóptica, conducen a condiciones de mala ventilación y dispersión de contaminantes en Santiago.

El paso de altas frías al sector argentino, sincronizadas con la irrupción de una dorsal cálida en altura, aparece como una condición recurrente. Solamente en algunos casos excepcionales, la propagación de la baja costera alcanza la IX Región. Por otra parte, también rara vez se observan condiciones de estancamiento atmosférico en condiciones prefrontales como ocurre en las condiciones Tipo BPF en Santiago.

Considerando como referencia la clasificación propuesta por J. Rutllant (1994), se verifica que parte importante de las configuraciones de episodios registradas en Temuco, cumplen con algunas características de episodios del Tipo A, aún cuando las características topoclimáticas de Temuco difieren de las de la cuenca de Santiago.

3.3 Estabilidad a niveles bajos

En verano de 2007 CENMA a requerimiento de CONAMA IX Región instaló una estación meteorológica en una torre ubicada sobre el cerro Oyama. Esto permitirá teniendo en línea los datos de esta estación en altura y una en superficie, Las Encinas y/o Padre Las Casas, analizar continuamente el perfil vertical de temperatura y las condiciones de estabilidad a niveles bajos.

La información de la estación de radiosondeo más cercana, corresponde a Puerto Montt, ubicada al sur de Temuco, a una distancia de aproximadamente 320 Km. y efectúa mediciones sólo a las 08 de la mañana (12UTC). La distancia a la que se encuentra la estación de radiosondeo, y el hecho que se efectúe solo una observación al día, determina

que las mediciones frecuentemente no sean necesariamente representativas de las condiciones meteorológicas de la ciudad de Temuco e impide un seguimiento continuo de las condiciones de estabilidad a niveles bajos, que es una condición determinante en episodios de contaminación atmosférica.

3.4 Clasificación de tipos de episodios en Temuco

Al irrumpir una dorsal cálida en altura, los procesos asociados tales como movimientos de descenso de masas de aire, y generación de una inversión de temperatura cercana a la superficie están presentes.

Por otra parte, el paso de altas frías migratorias al sector argentino genera a niveles bajos circulación del Este que encauzado por la topografía y reforzado por las brisas de montaña a valle, da como resultante en Temuco, principalmente en horas de la noche, componentes del Noreste, Norte e inclusive Noroeste.

Debido a que solo en casos muy excepcionales la baja costera alcanza la zona de Temuco, y a las diferencias topoclimáticas de Temuco respecto a Santiago, para efectos de análisis se clasificaron las condiciones asociadas a la irrupción de una dorsal en altura sincronizada al paso de una alta fría migratoria hacia el Este-Noreste como A (t), y las condiciones prefrontales de empeoramiento de las condiciones de ventilación, que muy rara vez se producen como BPF (t).

Se presentan configuraciones del Tipo A (t), asociadas a núcleos fríos sobre la Zona Central, y que determinan episodios en Temuco. En este caso se usa la nomenclatura A (t)-N (t).

Se verificó a través del análisis de las configuraciones asociadas a episodios, que éstas cumplen, en gran medida, con las características de episodios de Tipo A y que se clasificaron como A (t). Se presentan sólo muy excepcionalmente casos del Tipo BPF clasificados como BPF (t).

Se tipificó una condición nueva configuración asociada a episodios en Temuco, caracterizada por la presencia de una dorsal en 500 hpa. extendiéndose sobre la Zona Sur, y un núcleo frío irrumpiendo en la Zona Central. Esta configuración quedó clasificada como A (t)-N (t).

Algunos ejemplos de configuraciones A(t) y A(t)-N(t) se detallan en Anexos

3.5 Características generales de los Tipos de Episodios 3.5.1 Episodios A (t)

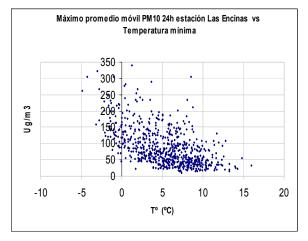
- El comienzo de los episodios se caracteriza por la incursión de una alta fría en superficie que se desplaza hacia el Noreste, sincronizada en altura con la irrupción de una dorsal cálida.
- Se presentan anomalías negativas de la temperatura en superficie, especialmente entre Julio y Septiembre, pudiendo hacerse cercanas a cero o positivas en Octubre.
- Las anomalías de presión tienden a presentarse positivas al inicio del episodio, pudiendo pasar a negativas hacia el final de los mismos, pareciendo depender esto de la cercanía del frente y si éste se manifiesta en superficie o solamente en altura.
- Las anomalías de la humedad relativa presentan una gran variabilidad: suelen pasar de negativas a positivas, o presentando poca diferencia respecto al valor medio, alcanzan valores ligeramente positivos o negativos.
- Se registran, en la mayoría de los casos, anomalías negativas de la velocidad del viento, asociadas a la presencia del anticiclón frío.
- El final del episodio normalmente se produce asociado a la entrada de la vaguada en altura que frecuentemente acompaña al sistema frontal, incremento de los movimientos de ascenso, debilitamiento de la subsidencia y aumento del viento superficial

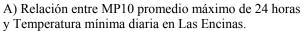
3.5.2 Episodios BPF (t)

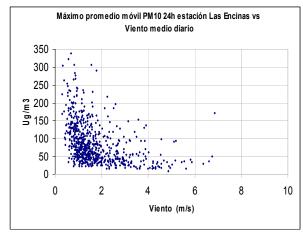
- Se caracteriza por la incursión de un sistema frontal débil acompañado de una vaguada en altura, o eventualmente flujo zonal o una dorsal si se tratara de un frente cálido, registrándose antes de la entrada del sistema frontal un empeoramiento de las condiciones de ventilación y de dispersión de contaminantes.
- Normalmente se registran en superficie anomalías positivas de la humedad relativa y de la temperatura, y negativas de la presión y el viento superficial.
- La mejoría de las condiciones de ventilación se produce con el ingreso del sistema frontal, eventual comienzo de las precipitaciones, aumento del viento superficial y mejoramiento de las condiciones de dispersión tanto en la horizontal como en la vertical, producto de la progresiva generalización de los movimientos de ascenso.

3.5.3 Episodios A (t)-N (t)

- El inicio de los Episodios está asociado a una condición Tipo A(t), es decir irrupción de una dorsal cálida en altura y presencia y paso de una alta fría a sector argentino. Después del paso de la dorsal hacia el Este, se presenta una vaguada extendida meridionalmente, y por la conducente de ésta se desplaza un núcleo frío desde la Zona Central alcanzando la Zona Sur.
- Las configuraciones de presión en superficie, los mínimos de presión alcanzados, y el gradual desplazamiento de nubosidad baja costera desde la Zona Central a la Zona Sur, sugieren una baja costera subyacente que eventualmente alcanza la latitud de Temuco.
- Se verifican anomalías negativas de la presión y de la velocidad del viento en superficie.

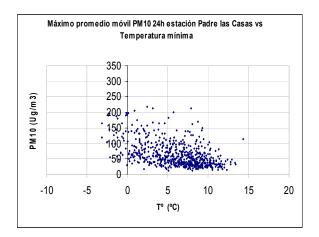


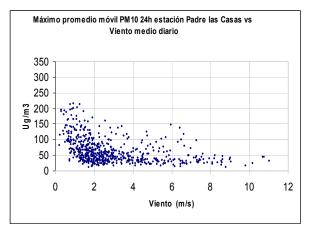



- Se observan anomalías negativas de temperatura respecto a las mínimas, y positivas respecto a las máximas.
- Se presentan con frecuencia anomalías negativas de la humedad relativa durante el desarrollo del episodio, pareciendo depender fuertemente de la intensidad del flujo del Este a niveles bajos.
- La inversión térmica de subsidencia sobre Puerto Montt aparece bien definida y marcada.
- El fin del Episodio se produce normalmente asociado a la incursión del núcleo frío, entrada de nubosidad, cambio en la circulación del viento que se presenta con una componente Oeste predominante, aumento de la humedad relativa y del factor de ventilación

3.6 Análisis de relaciones entre concentraciones de MP10 y variables meteorológicas de escalas regional y local

Las siguientes figuras muestran algunas relaciones de las variables observadas y MP10 para los meses de Abril a Septiembre entre 2003 al 2006. El eje horizontal corresponde a una variable meteorológica, el eje vertical corresponde a la concentración del máximo promedio móvil diario de 24 h para MP10.





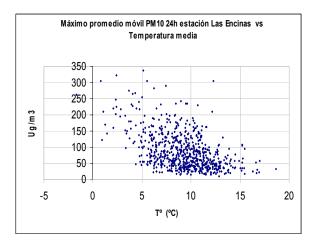
B) Relación entre PM10 promedio máximo de 24 horas y Viento medio diario en Las Encinas.

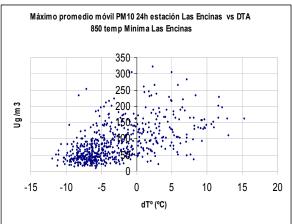
C) Relación entre MP10 promedio máximo de 24 horas y Temperatura mínima diaria en Padre Las Casas.

D) Relación entre MP10 promedio máximo de 24 horas y Viento medio diario en Padre Las Casas.

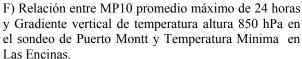
Los casos A y C muestran la relación entre el máximo promedio móvil de MP10 de 24 horas en las estaciones de Las Encinas y Padre Las Casas con la temperatura mínima registrada en el día. Se observa una relación inversa entre el MP10 y la temperatura mínima con una importante dispersión, especialmente en las altas concentraciones de MP10.

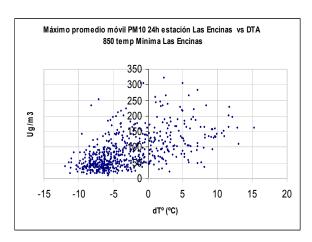
La estación de Las Encinas muestra una mejor asociación entre el MP10 y la temperatura mínima, que en la estación de Padre Las Casas. En esta relación, se aprecia que a temperaturas mínimas menores a 5°C aumenta el número de días en que el MP10 supera los 100 μg/m³, situación que se acentúa aún más con temperaturas menores a 0°C.

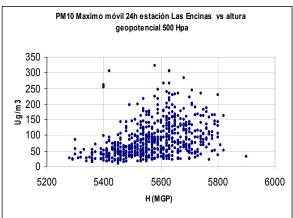

Los casos B y D muestran la relación entre el máximo promedio móvil de 24 horas y la velocidad promedio del viento observada en las estaciones de Las Encinas y Padre Las Casas, con una relación linealmente inversa entre ellas. El promedio del viento muestra valores sobre 4 m/s en la estación de Padre Las Casas, llegando incluso a registrar valores de hasta 10 m/s. En Las Encinas, el promedio diario de viento en escasas oportunidades supera los 6 m/s.


Con valores medios diarios de velocidad del viento superior a 3 m/s no es esperable que se registren episodios. Sin embargo si bien para que se registren altos valores de MP10 es condición necesaria que el viento medio sea menor a 1.5 m/s, asociado a bajas velocidades del viento se observa una gran dispersión y un número importante de días con concentraciones bajas.

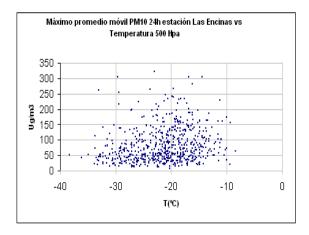
La amplia diferencia en la velocidad del viento entre Las Encinas y Padre Las Casas, puede ser una de las causas que determinan las diferencias de concentraciones medidas en ambas estaciones debido a mejores condiciones medias de ventilación en Padre Las Casas.

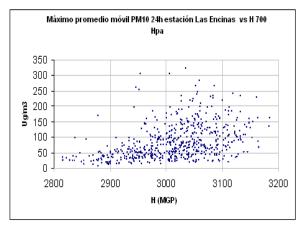




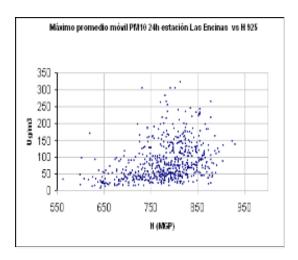


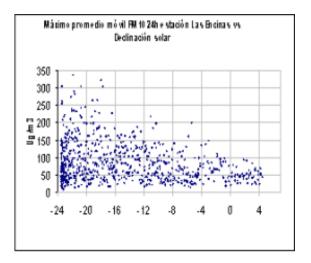
E) Relación entre MP10 promedio máximo de 24 horas y Temperatura media diaria en Las Encinas.




G) Relación entre MP10 promedio máximo de 24 horas y Gradiente vertical de temperatura altura 925 hPa en el sondeo de Puerto Montt y Temperatura hPa en el sondeo de Puerto Montt. Mínima en Las Encinas.

H) Relación entre MP10 promedio máximo de 24 horas y Altura en Metros geopotenciales observada en 500





I) Relación entre MP10 promedio máximo de 24 horas y Temperatura observada en 500 hPa en el sondeo de Puerto Montt.

J) Relación entre MP10 promedio máximo de 24 horas y Altura en Metros geopotenciales observada en 700 hPa en el sondeo de Puerto Montt.

K) Relación entre MP10 promedio máximo de 24 L) Relación entre M horas y altura observada en 925 hPa en el sondeo de y declinación solar. Puerto Montt.

L) Relación entre MP10 promedio máximo de 24 horas y declinación solar.

El caso E muestra la relación existente entre el máximo promedio móvil de 24 horas y la temperatura media del día en Las Encinas, la cual presenta similar comportamiento que en las temperaturas mínimas, es decir, en días de temperatura con promedio bajo se aprecia las mayores concentraciones de MP10. La temperatura media, donde se observa una mayor dispersión de valores observados de MP10, está en el rango de 5 a 10°C.

El caso F muestra la relación respecto al gradiente vertical de temperatura, entre la altura de 850 hPa a las 8 de la mañana (12 UTC) y la temperatura mínima registrada en la estación de Las Encinas. Los valores positivos del gradiente, se traducen en un aumento de las

concentraciones de MP10 que alcanzan valores mayores a 100 ug/m³, y que están asociados a una estabilización atmosférica. Por el contrario, en días con gradiente negativo se aprecia una condición de inestabilidad atmosférica, y con ello, una mayor dispersión de los contaminantes. Similar situación presenta el caso G, donde los gradientes mayores a 0° C se relacionan a concentraciones de MP10 más altos.

El caso H muestra la relación de MP10 con respecto a la altura al nivel de 500 hPa, nivel que representa las ondas a escala sinópticas (troposfera media). En el gráfico de dispersión se observa una relación directa entre las concentraciones de MP10 y la altura de 500 hPa, donde las mayores concentraciones de MP10 se asocian a alturas entre los 5600 y 5700 mgp, que generalmente representa una condición de incursiones de dorsales en altura durante el período invernal. Sin embargo, en los valores extremadamente altos de geopotencial en 500 hPa, mayor a 5700 mgp, las concentraciones de MP10 tienden a disminuir. Esto se debería al cambio de las masas de aire al momento del paso de la dorsal en altura (máximo valor del geopotencial) y posterior aproximación de vaguada, que frecuentemente viene acompañada de aporte de aire costero que aumenta la dispersión de los contaminantes. Por otra parte sincronizado al aumento de la altura geopotencial en 500 y paso del eje de la dorsal en la troposfera media, en niveles bajos se produce el paso de la alta fría migratoria a sector argentino. Respecto al caso I y J que muestra la relación de MP10 con la temperatura al nivel de 500 hPa y altura al nivel de 700 hPa, se observa similar situación que en el caso H, reforzando lo señalado anteriormente.

El caso L muestra la relación de MP10 con la declinación solar (onda sinusoidal relacionada con la radiación incidente en un punto de la tierra debido al movimiento de traslación), en el cual se aprecia concentraciones más altas de MP10 cuando la declinación solar esta en los valores (-23.5 a -16) correspondientes aproximadamente al período entre el 05 de mayo y el 05 de agosto, período que coincide con la ocurrencia de los episodios de material particulado.

3.7 Implementación del PMCA

El PMCA es una medida netamente meteorológica, siendo su valor inversamente proporcional al factor de ventilación (Rutllant y Salinas, 1983), entendiéndose por factor de ventilación el producto del espesor de la capa de mezcla superficial por el viento medio dentro de la capa. El índice da cuenta del potencial de la atmósfera para favorecer o inhibir la mezcla vertical y la dispersión de contaminantes.

En este estudio, se realizó una tipificación de las condiciones meteorológicas que a escalas sinóptica, regional y local, determinan diferentes categorías de PMCA y por lo tanto diferentes condiciones de ventilación y de dispersión de MP10 en Temuco.

Para la clasificación de los PMCA se utilizaron cartas de reanálisis sinóptico de presión superficial y altura geopotencial de 500 hPa a las 00 UTC (20 horas), además de algunas

variables meteorológicas de interés que complementan el análisis sinóptico: temperatura mínima, presión media y precipitación.

Las cartas de pronóstico se utilizan también para definir las condiciones del día en que se emite el pronóstico, y el día siguiente asumiendo el pronóstico a 24 horas como perfecto. Esta hipótesis de trabajo implica que al considerar variables pronosticadas, aumentará la incertidumbre de las ecuaciones de pronóstico de calidad de aire cuando se utilicen en forma operacional. Para intentar contrarrestar este efecto, se realiza una sensibilización de los resultados finales en función del PMCA.

Definición de Categorías de PMCA:

Categoría PMCA	Condiciones de ventilación y dispersión
1 BAJO	Muy buenas
2 REGULAR BAJO	Buenas
3 REGULAR	Regulares
4 REGULAR/ALTO	Malas
5 ALTO	Malas a críticas

En Anexos se describen y detallan las distintas Categorías de PMCA (7.1)

4 Desarrollo de un modelo de pronóstico de niveles de calidad de aire, basado en relaciones estadísticas entre variables meteorológicas y contaminación atmosférica

4.1 Antecedentes

El modelo de pronóstico diario de episodios de contaminación por material particulado (MP10) para Temuco consiste en un sistema operacional que incluye:

- a) La preparación de un pronóstico diario de condiciones meteorológicas asociadas a contaminación atmosférica en Temuco, entregando un índice denominado Potencial Meteorológico de Contaminación Atmosférica (PMCA).
- b) La operación de un modelo de pronóstico de calidad de aire por material particulado respirable, capaz de prever con 24 horas de anticipación los diferentes niveles de calidad de aire.

El modelo de pronóstico de calidad está basado en relaciones estadísticas encontradas mediante análisis de regresión lineal múltiple, entre variables de calidad de aire y meteorología conocidas en el momento que se prepara el pronóstico, y las condiciones meteorológicas y de calidad de aire pronosticadas para el día siguiente.

La estimación de las ecuaciones de pronóstico de calidad de aire tiene alcances limitados debidos principalmente a que la información de altura proporcionada por la estación Oyama todavía no es estadísticamente representativa del período donde se presentan típicamente los episodios de MP10 (Abril-Septiembre) debido a que comenzó a operar a inicios del 2007 en la época estival.

El desarrollo de las ecuaciones de pronóstico incluyo las siguientes etapas:

- Generación de una base de datos de variables meteorológicas y de calidad de aire.
- Análisis de relaciones entre variables predictivas.
- Ajuste de ecuaciones de pronóstico mediante regresión lineal múltiple.
- Conclusiones y recomendaciones.

Información disponible

La información disponible para la ejecución del estudio incluyó:

- Índices diarios de PMCA, generados por CENMA para el período de operación del sistema de pronóstico de MP10, que comprende los meses de otoño-invierno de 2003 al 2006.
- Información meteorológica de altura para la zona central de Chile, correspondiente al radiosondeo realizado en Puerto Montt, limitada a la información de utilidad según la

experiencia adquirida en la preparación del pronóstico diario durante el período 2002. La estación de altura de Puerto Montt no es necesariamente representativa de las condiciones meteorológicas que se registran en Temuco. De hecho se encuentra a una distancia mayor respecto a Temuco que la recomendada por la OMM para ser meteorológicamente representativa de esta ciudad. En ocasiones pueden presentarse condiciones similares en ambas ciudades, pero en otras pueden diferir de forma importante. El análisis meteorológico y la opinión experta de los especialistas podrán determinar cuando el sondeo de Puerto Montt es representativo de las condiciones que se presentan en Temuco y cuando no lo es.

- Información meteorológica de superficie y de calidad de aire de la estación Las Encinas y Padre Las Casas.
- Información de modelos numéricos del tiempo.
- Imágenes de satélites (resolución visual e IR para Sudamérica).

En general, la información corresponde a valores numéricos e imágenes obtenidas en medio digital.

4.2 Definición de variables y construcción de Bases de datos

La Base de datos inicial considera cuatro categorías de variables:

- Mediciones meteorológicas de altura. Radiosondeo de Puerto Montt (perfil de las 12 UTC de cada día, aproximadamente 08 h local).
- Potencial Meteorológico de Contaminación Atmosférica por MP10 generado por CENMA para Temuco.
- Mediciones horarias meteorológicas de superficie (Estación Las Encinas y Padre Las Casas).
- Mediciones horarias de calidad de aire para MP10, (Estación Las Encinas y Padre Las Casas).

Los datos corresponden a los años 2003 al 2006, período 01 abril a 30 de septiembre de cada año.

La información de cada categoría de variable incluida en las bases de datos es la siguiente:

Mediciones meteorológicas de altura

Variables obtenidas del radiosondeo de Puerto Montt:

- Variables de niveles mandatorios (1000, 925, 850, 700 y 500) hPa: altura, temperatura, depresión del punto de rocío, viento (dirección y rapidez).
- Inversión térmica de subsidencia, base y tope (altura, presión y temperatura).
- Índices de estabilidad.

En los casos de ausencia de niveles mandatorios y variables de interés utilizadas del radiosondeo existe un dato ausente. Sin embargo, en forma operacional es factible inferir

los valores ausentes usando sondeos del día anterior y cartas pronosticadas para los niveles mandatorios.

Potencial Meteorológico de Contaminación Atmosférica para MP10

• Categorías determinadas por CENMA, condición relevante para cada día.

Mediciones meteorológicas de superficie (Estación Las Encinas y Padre Las Casas)

- Valores horarios: temperatura, humedad relativa, dirección y velocidad del viento.
- Cálculo de valores diarios (a partir de los valores horarios).

Mediciones de calidad de aire MP10 (Estación Las Encinas y Padre Las Casas)

- Concentraciones horarias de MP10.
- Cálculo de valores diarios (a partir de los valores horarios).

4.2.1 Concentraciones de MP10

A partir de los valores horarios de concentraciones de MP10 medidas en la estación de monitoreo de calidad de aire se determinaron los promedios de 24 horas.

Se hizo el cálculo de concentraciones de MP10 para diferentes periodos:

- Concentración valor máximo del promedio móvil de 24 h, 12 h, 08h, 06 h, y horario.
- Concentración promedio de 24 h al final del día.
- Concentración promedio de 24 h, 12 h, 08h, 06 h y 1h a ciertas horas del día (por ejemplo promedio de 12h a las 06:00, promedio de 12 h a las 18:00, promedio de 06 h a las 02:00, entre otros).

Los valores de concentraciones de 24 h y de 12 h (calculados a partir de los valores horarios) forman una serie de datos diarios. Estos valores se incorporan a la base de datos como valores del día actual, del día previo y del día siguiente, para lo cual se usa la serie desfasada (-1, 0, y +1 día).

4.2.2 Variables meteorológicas de superficie

El estudio considera variables derivadas de las mediciones meteorológicas de superficie, identificadas como indicadores de interés, a partir de la experiencia obtenida por CENMA en el análisis diario de condiciones meteorológicas asociadas a episodios en Temuco durante años anteriores en el período otoño-invierno. La tabla siguiente presenta variables que representan valores diarios, construidos a partir de valores horarios observados:

CODIGO	VARIABLE
TMXD0LE	Temperatura Máxima del día de hoy en estación Las Encinas

CODIGO	VARIABLE					
TMND0LE	Temperatura Mínima del día de hoy en estación Las Encinas					
TMNDOLED1	Temperatura Mínima pronosticada para mañana Las Encinas, asumiendo pronóstico perfecto					
TMNETAD1	Temperatura Mínima pronosticada para mañana Las Encinas, según modelo regional ETA					
TMDD0LE	Temperatura Media del día de hoy en estación Las Encinas					
HRMXD0LE	Humedad relativa Máxima del día de hoy en estación Las Encinas					
HRMND0LE	Humedad relativa Mínima del día de hoy en estación Las Encinas					
HRMDD0LE	Humedad relativa Media del día de hoy en estación Las Encinas					
PAMDLE	Presión atmosférica media del día de hoy estación Las Encinas					
WSMELE	Intensidad del viento media del día de hoy en estación Las Encinas					

4.2.3 Índice de estacionalidad

Para incorporar posibles efectos de variaciones estacionales a lo largo del período analizado (marzo a septiembre), se incorporó el siguiente Índice de Estacionalidad:

CODIGO	VARIABLE
DECLIN	Ángulo de Declinación Solar, expresado en grados

Declinación solar: Onda sinusoidal relacionada con la radiación incidente en un punto de la tierra debido al movimiento de traslación.

4.2.4 Descripción de la Base de Datos

El estudio considera 232 variables de trabajo. La nomenclatura usada en la Base de Datos se presenta en la tabla siguiente:

Tipo de Variable	Código	Descripción código
Variables medidas en superficie	XXtttss	XX identificador de tipo de variable
(calidad de aire, meteorología)		ttt periodo de tiempo
		ss código de estación
Variables de altura	XXzzttt	XX identificador de variable de altura
(radiosonda):		zz código de nivel de altura
		ttt periodo de tiempo

Un mayor detalle con la totalidad de las variables incluidas en el estudio y un resumen con estadística descriptiva de las variables utilizadas en el desarrollo de las ecuaciones, se detallan en Anexos (7.2).

4.3 Análisis de relaciones entre variables meteorológicas

La gran cantidad de variables meteorológicas de superficie y altura, disponibles para la búsqueda de modelos estadísticos de pronóstico de calidad de aire, hace recomendable realizar previamente un análisis y síntesis de esas variables, buscando relaciones entre ellas que permitan disminuir el número de variables predictoras.

Se aplicó análisis de componentes principales (ACP), para estudiar comportamientos comunes entre variables

El ACP tiende a identificar factores encubiertos, que explican el patrón de correlación dentro de un grupo de variables observadas. El análisis factorial se usa a menudo en la reducción de datos, mediante la identificación de un número de factores que explican gran parte de la varianza en un gran número de variables observadas. El análisis factorial también puede usarse para generar hipótesis, referente a mecanismos causales, o para estudiar variables para análisis subsecuentes (por ejemplo, para identificar colinealidad previa a un análisis de regresión lineal).

La aplicación del ACP consideró el siguiente procedimiento:

- Obtención de un coeficiente de correlación de la matriz de datos.
- Extracción de factores mediante análisis de la matriz de correlación (muy recomendable cuando las variables son medidas en diferentes escalas).
- Uso de Varimax para separar comportamientos diferentes. Varimax es un método de rotación ortogonal que minimiza el número de variables que demuestran tener un alto peso (útil para la interpretación de los factores principales).

Se estudió por separado las relaciones entre variables meteorológicas medidas en superficie y medidas en altura por el radiosondeo realizado en Puerto Montt.

Los resultados de un análisis de carácter exploratorio, de las relaciones entre variables meteorológicas de superficie (temperatura, humedad relativa, velocidad de viento, dirección de viento, presión atmosférica, por una parte), y variables meteorológicas de altura del radiosondeo de Puerto Montt son presentados a continuación:

4.3.1 Resultados del análisis de componentes principales para variables meteorológicas de superficie

El ACP de las variables de las estaciones las Encinas y Padre Las Casas entrega 7 componentes principales, los cuales son presentados en la tabla siguiente

Matriz de componentes rotados para variables meteorológicas de estaciones Las Encinas y Padre Las Casas, período 1 Abril al 30 de Septiembre de los años 2003 al 2005.

	Componentes						
	1	2	3	4	5	6	7
TMXD0LE	.788	.356	082	110	386	124	.003
TMND0LE	.678	459	.044	.275	.312	.072	.227
TMDD0LE	.913	165	053	.195	015	012	.174
TMXDALE	.681	.289	021	228	.000	451	.237
TMNDALE	.481	407	048	055	.135	.221	.579
TMDDALE	.712	170	072	138	.052	119	.552
HRMXD0LE	055	.209	.194	536	.167	.429	025
HRMND0LE	115	258	.221	.159	.786	.331	.087
HRMDD0LE	153	037	.272	204	.724	.482	.069
HRMNDALE	093	343	.068	.164	.165	.828	.103
HRMDDALE	115	107	.100	.025	.206	.877	099
PAMDLE	211	116	182	634	252	.105	368
PAMDDALE	090	.193	168	280	174	.049	681
WSMELE	.047	206	071	.763	150	.096	.335
WSMEDALE	100	299	040	.305	143	038	.606
TMXD0PL	.786	.345	077	104	391	137	005
TMND0PL	.648	548	.046	.302	.220	.011	.191
TMDD0PL	.907	194	039	.208	084	074	.142
TMXDAPL	.684	.216	178	140	260	.007	196
TMNDAPL	.605	070	.080	.448	.408	063	256
TMDDAPL	.805	.059	058	.287	.139	036	328
HRMXD0PL	007	.083	.911	154	171	.053	059
HRMND0PL	094	198	.716	.135	.497	.244	.060
HRMDD0PL	058	.006	.924	101	.169	.187	004
HRMNDAPL	099	.019	.776	.199	.293	013	.040
HRMDDAPL	055	.058	.954	035	.010	045	.083
WSMEPL	.088	198	025	.822	074	.148	.204
WSMEDAPL	.038	.003	.002	.665	.252	.091	162
DT85LE	.022	.936	.025	074	087	097	170
DT92LE	030	.938	.023	078	118	152	113
DT85PL	.048	.951	.023	086	021	053	137
DT92PL	.004	.958	.021	092	036	096	077

Método de extracción: Análisis de componentes principales. Método de rotación: Normalización Varimax con Kaiser. La rotación ha convergido en 10 iteraciones.

La componente 1 está relacionada en general con las temperaturas (máximas, mínimas y medias), tanto en las Encinas como en Padre las Casas, mostrando mejor correlación las temperaturas medias. Sin embargo, hay que considerar que la temperatura media tiene más "memoria", en el sentido que toma parte del ciclo diario, no así las temperaturas extremas.

La componente 2 se relaciona con la diferencia vertical de temperatura en 850 hPa y 925 hPa (sonda de Puerto Montt) con la temperatura mínima de Las Encinas y Padre Las Casas, estos valores resultan ser similares entre sí.

La componente 3 se relaciona con la humedad relativa (máxima mínima y media) de Padre Las Casas, mostrando mejor correlación (factor) con la humedad relativa máxima y media.

En la componente 4, se relacionan la presión atmosférica media y el viento medio en Las Encinas con signo opuesto, lo que indica una relación inversa, además de un grado de colinealidad entre ambas variables, por lo que bastaría tomar la de mejor correlación para incluirla en la ecuación final. Se sugiere dejar la rapidez del viento en lugar de la presión, primero por el hecho de que da mejor correlación, y segundo porque no se dispone de datos de presión en Padre Las Casas. En esta misma componente se relaciona la rapidez del viento medio en Padre Las Casas, pero con mejor correlación que en Las Encinas.

En las componentes 5 y 6 se relacionan la humedad relativa (máximas, mínimas y medias) en estación Las Encinas, con una correlación menor que en Padre Las Casas. La ubicación de esta variable en distintas componentes que en Padre Las Casas, da una señal que la humedad relativa no tiene un mismo comportamiento en ambas estaciones.

Por último en la componente 7, se relacionan la rapidez media del viento del día anterior y la presión media del día anterior en Las Encinas.

Conclusiones del análisis de variables meteorológicas de superficie:

- Los valores de temperaturas muestran un comportamiento similar en ambas estaciones, agrupándose en las dos primeras componentes; en la primera los valores máximos, mínimos y medios de la temperatura, y en la segunda las diferencias verticales de temperatura en ambas estaciones y el sondeo de Puerto Montt. Una correlación alta en las temperaturas medias no necesariamente indica una buena señal, ya que esta variable incluye el ciclo diario de temperatura, no así las temperaturas extremas.
- Los valores de humedad relativa aparecen relacionados en la tercera componente en Padre Las Casas, y en la quinta y sexta componente en Las Encinas, con mejor

correlación en Padre Las Casas. De aquí se infiere que dicha variables muestra un comportamiento distinto en ambas estaciones.

• Los valores de presión se relacionan inversamente con los de rapidez de viento, y aparecen en la cuarta y séptima componente, con mayor peso en la estación Padre Las Casas.

Los resultados anteriores entregan pautas para seleccionar variables representativas de grupos de variables con comportamientos comunes.

4.3.2 Resultados del análisis de componentes principales para variables meteorológicas de altura

El ACP de las variables meteorológicas de altura entrega 6 componentes principales, los cuales son presentados en la tabla siguiente

a) Matriz de componentes rotados para variables meteorológicas de altura, período 1 Abril al 30 de Septiembre de los años 2003 al 2005.

	Componentes					
	1	2	3	4	5	6
PASU08L	075	.863	224	181	.268	.213
H0008L	057	.894	276	134	.218	.198
H9208L	.036	.892	250	132	.201	.190
TA9208L	.864	209	.028	080	162	.033
WD9208L	063	086	.240	.690	.064	165
WS9208L	008	228	.715	042	361	302
H8508L	.185	.853	270	151	.179	.195
TA8508L	.936	115	035	098	091	.060
WD8508L	052	058	.206	.727	237	295
WS8508L	.013	274	.797	003	263	288
H7008L	.536	.740	246	144	.124	.173
TA7008L	.934	.055	008	005	031	.019
WD7008L	.063	228	.101	.718	304	095
WS7008L	.025	183	.831	.234	135	081
H5008L	.793	.535	158	072	.076	.115
TA5008L	.877	.175	.029	.080	026	.083
WD5008L	048	516	009	.414	462	.136
WS5008L	104	099	.751	.362	131	.206
DP9208L	.431	.088	135	405	126	.482
DP8508L	.411	.175	232	312	.032	.515
DP7008L	.184	.273	139	123	.109	.635

	Componentes					
	1	2	3	4	5	6
DP5008L	038	.131	007	108	.210	.554
SDIR928L	154	241	.539	.524	.320	157
CDIR928L	105	.167	343	133	.742	.385
SDIR8508L	069	266	.691	.491	.044	244
CDIR858L	110	.222	281	072	.816	.273
SDIR7008L	002	201	.661	.625	051	076
CDIR7008L	127	.463	138	079	.781	.053
ESP5008L	.974	.036	003	.005	055	.004
SDIR508L	078	166	.626	.588	099	.171
CDIR508L	089	.572	008	109	.660	065

Método de extracción: Análisis de componentes principales. Método de rotación: Normalización Varimax con Kaiser. La rotación ha convergido en 27 iteraciones

En la primera componente se agrupan las variables de temperatura (925, 850,700 y 500) hPa, la altura geopotencial de 500 hPa y el espesor entre 500-1000 hPa.

En la segunda componente se agrupan las alturas geopotenciales de la troposfera baja (1000, 925, 850 y 700) hPa y la presión en superficie. En la tercera y cuarta componente se agrupan las intensidades y direcciones del viento en la troposfera media-baja (925, 850, 700 y 500) hPa. También en la tercera componente aparece relacionada con el seno de la dirección del viento (componente Este-Oeste del viento) en la troposfera media-baja (850, 700 y 500) hPa.

En la quinta componente aparece el coseno de la dirección del viento (componente Norte-Sur del viento) en la troposfera baja (925, 850 y 700) hPa.

Por último, en la sexta componente, no aparece ninguna variable que entregue una correlación significativa. Solo aparecen débilmente relacionadas la depresión del punto de rocío para los niveles de 925, 850, 700 y 500 hPa.

Resumiendo las primeras cuatro componentes desprendido del análisis de componentes principales para las variables meteorológicas en altura, tal como se aprecia en la siguiente tabla, se obtiene que las temperaturas, el espesor y la altura de 500 hPa, se relacionan con el primer factor, en tanto que las alturas geopotenciales de los niveles más bajos (1000, 925, 850 y 700) hPa y la presión en superfície se relacionan al segundo factor. En el tercer factor solo se agrupan las intensidades del viento para los niveles entre 925 y 500 hPa, y por último en el cuarto factor se agrupan las direcciones del viento entre los niveles de 925 y 700 hPa.

Tabla 4.3-1 Relaciones de variables meteorológicas de altura para los cuatro primeros factores principales.

		Variables				
Niveles	Temp.	Pto.Rocío	Altura	Presión	Vel. Vto.	Dir. Vto.
Superficie				F2		
1000 hPa			F2			
925 hPa	F1		F2		-F4	F3
850 hPa	F1		F2		-F4	F3
500 hPa	F1		F1			
Espesor 1000-500			F1			

Donde: Fi corresponde a factor o componente i

De manera de encontrar relaciones directas de los datos meteorológicos de altura para variables afines, se realizaron nuevos análisis de componentes principales considerando en casos separados variables relacionadas con altura atmosférica en diferentes niveles (geopotencial), temperatura y humedad, y perfiles de viento. Los resultados obtenidos se presentan a continuación.

b) Análisis de relaciones entre presiones y alturas del radiosondeo de Puerto Montt durante el período 2003-2005.

Análisis de factores principales de niveles de presión y alturas

Matriz de componentes rotados

	Componentes				
	1	2			
PASU08L	.978	.051			
H0008L	.992	.083			
H9208L	.970	.170			
H8508L	.931	.299			
H7008L	.742	.655			
H5008L	.457	.887			
ESP5008L	106	.993			

Método de extracción: Análisis de componentes principales. Método de rotación: Normalización Varimax con Kaiser. La rotación ha convergido en 3 iteraciones.

Se observa un comportamiento diferente entre las alturas geopotenciales de los niveles inferiores respecto de los superiores. En la primera componente se agrupan las alturas de 1000, 925, 850 y 700 hPa, además de la presión en superficie. No obstante, se observa que la correlación de la altura de 700 hPa es inferior al resto. En la segunda componente se agrupan la altura geopotencial de 500 hPa y el espesor 500-1000 hPa.

c) Análisis de relaciones entre temperaturas y depresión del punto de rocío del radiosondeo de Puerto Montt durante el período 2003-2005.

Matriz de componentes rotados

	Componentes							
	1	2	3					
TA9208L	.389	.789	120					
TA8508L	.436	.843	010					
TA7008L	.277	.880	.053					
TA5008L	.173	.889	.151					
DP9208L	.712	.193	.293					
DP8508L	.641	.180	.467					
DP7008L	.260	.056	.796					
DP5008L	.023	035	.734					
DT85LE	.861	.394	.130					
DT92LE	.923	.267	.063					
DT85PL	.838	.444	.116					
DT92PL	.895	.335	.049					

Método de extracción: Análisis de componentes principales. Método de rotación: Normalización Varimax con Kaiser. La rotación ha convergido en 5 iteraciones.

Se observa que las diferencias verticales de temperatura (DT92LE, DT92PL, DT85LE y DT85PL) junto con la depresión del punto de rocío en 925 hPa, se encuentran en un mismo factor; por otra parte las temperaturas de 925, 850, 700 y 500 hPa se agrupan en la segunda componente. Se observa un comportamiento distinto en la depresión del punto de rocío a diferentes alturas, ya que en la tercera componente aparece la depresión del punto de rocío de 700 y 500 hPa.

d) Análisis de relaciones entre direcciones y velocidades de viento del radiosondeo de Puerto Montt durante el período 2003-2005.

Análisis de factores principales de direcciones y velocidades de viento

Matriz de componentes rotados

	Componentes							
	1	2	3					
WD9208L	.770	032	.020					
WS9208L	.125	365	.804					
WD8508L	.707	345	.101					
WS8508L	.227	298	.850					
WD7008L	.673	476	015					
WS7008L	.434	169	.766					

		Componentes			
	1	2	3		
WD5008L	.389	686	054		
WS5008L	.556	084	.581		
SDIR928L	.782	.172	.315		
CDIR928L	091	.719	510		
SDIR8508L	.742	081	.537		
CDIR858L	018	.791	460		
SDIR7008L	.783	161	.474		
CDIR7008L	027	.884	293		
SDIR508L	.740	133	.403		
CDIR508L	071	.854	127		

Método de extracción: Análisis de componentes principales. Método de rotación: Normalización Varimax con Kaiser. La rotación ha convergido en 14 iteraciones.

En la primera componente aparecen relacionadas las direcciones del viento en los niveles bajos (925 y 850 hPa), junto con los senos de la dirección del viento para todos los niveles (componente Este-Oeste del viento). En la segunda componente se agrupan los cosenos de la dirección del viento (componente Norte-Sur del viento). Por último en la tercera componente aparecen las intensidades del viento para los niveles bajos de la troposfera (925, 850 y 700 hPa).

4.4 Ecuaciones de pronóstico para concentraciones de MP10 desarrolladas mediante regresión lineal múltiple

El desarrollo de las ecuaciones de pronóstico para concentraciones de MP10 en Las Encinas y Padre Las Casas, utilizando análisis de regresión lineal múltiple con la base de datos construida para este fin, se presentan en dos fases. La primera de ellas apuntando a encontrar ecuaciones de pronóstico para los promedios de 24h, 12h, 8h, 6h, y 1h, y una segunda etapa que se enfoca al mejoramiento de las ecuaciones poniendo mayor énfasis en los promedios de 24h y métodos de ajuste para fortalecer el acierto en los valores extremos.

Se ajustaron ecuaciones de pronóstico para concentraciones de MP10 de 24h, 12h, 6h, y 1h mediante análisis de regresión lineal múltiple con variables meteorológicas observadas, PMCA observado y pronosticado, concentraciones medidas y otras variables incorporadas a la base de datos.

Las ecuaciones obtenidas son del tipo:

$$Y_{SS} = B0 + B1*X1 + B2*X2 + B3*X3 + ...$$

Donde Y es el valor estimado de concentraciones para la estación ss, B0, B1, B2, son las constantes estimadas en la regresión para X1, X2, X3, variables explicativas seleccionadas en el método de regresión.

El método de regresión múltiple de tipo "forward", empieza incorporando a la ecuación de regresión la variable que tiene la correlación parcial más fuerte (positiva o negativa) con la variable a predecir. En cada paso, se incorpora la variable siguiente con la correlación parcial más fuerte. El proceso de incorporación de variables se detiene cuando la correlación parcial deja de ser significativa.

Otro método que entrega resultados muy parecidos a "forward", es "stepwise". En este caso, al incorporar una nueva variable en un paso, se puede eliminar otra variable seleccionada antes, si ha perdido significancia al agregar la variable nueva. Las pruebas realizadas con ambos métodos entregaron resultados muy parecidos.

El método "backward" es similar, pero en este caso se incorporan en el primer paso todas las variables, y luego se van eliminando una a una. Usualmente ambos métodos deberían converger a la misma solución. En este caso, debido al gran número de variables que incluye la base de datos, el método "backward" no es práctico de aplicar.

Las ecuaciones presentadas son las encontradas en el paso final del ajuste de regresión múltiple usando el método "stepwise".

4.4.1 Consideraciones generales

El método de regresión lineal múltiple se aplicó a la base de datos, seleccionando en general todas las variables potencialmente explicativas. La base de datos incorpora 732 días para el período completo. El período con información corresponde a los meses de otoño – invierno de los años 2003 al 2005, esto es, entre Abril y Septiembre.

La base de datos incorpora un número elevado de variables (160 para Las Encinas, y 149 para Padre Las Casas). Para obtener la mejor ecuación, se prueba hasta llegar a una ecuación con el máximo coeficiente de correlación posible, teniendo en cuenta el análisis de componentes principales previo, y el índice de colinealidad de las variables involucradas en la ecuación.

Para la estaciones de monitoreo de Las Encinas y Padre Las Casas se ajustó una ecuación de pronóstico, usando las variables propias de cada estación (concentraciones y meteorología) y las variables generales (PMCA, variables meteorológicas de altura, índices de estacionalidad).

Se utilizó el período 2003-2005 sin incluir las variables del radiosondeo de Puerto Montt, y de esta forma asegurar la obtención de resultados de una ecuación en el caso que fallara el

lanzamiento del radiosondeo. Luego, se obtuvo una ecuación incluyendo todas las variables para los casos cuando la información esté completa. Las ecuaciones resultantes en este estudio se validaron con la información del año 2006.

Consideraciones para la segunda fase del desarrollo para las ecuaciones de Temuco:

Buscando la forma de conseguir un mejor ajuste en las ecuaciones, especialmente para los valores extremos en Las Encimas en cuanto a promedio móvil de 24 horas, se amplió la base de datos, integrando nuevas variables relacionadas con MP10. Se consideraron promedios móviles a distintas escalas temporales y para ciertas horas fijas del día, de manera de reflejar de mejor forma los pics horarios (nocturnos). Además se plantearon nuevas ecuaciones tanto respecto al pronóstico para el día siguiente, como metodologías de ajustes para alcanzar los valores extremos, como se detalla a continuación.

La base de datos "extendida" contiene:

- Promedios móviles de 24 horas, el valor observado a las 17 horas.
- Promedios móviles de 12 horas, el valor observado a las 11 horas y 23 horas.
- Promedios móviles de 08 horas, el valor observado a las 05 horas, 11 horas, 17 horas y 23 horas.
- Promedios móviles de 06 horas, el valor observado a las 05 horas, 17 horas y 23 horas

Como planeamiento de las nuevas ecuaciones se utilizó la siguiente metodología:

- Los modelos se realizaron utilizando las variables observadas hasta las 10 de la mañana para el pronóstico del máximo valor de 24 horas para el día siguiente. Sin embargo, a modo exploratorio también se realizaron modelos de pronóstico aptos para ser ejecutados en horas de la tarde, considerando la información observada hasta las 17 horas (más cercana al momento de constatación del pronóstico). Para operar estas ecuaciones es necesarios que la información de la estación de Las Encinas este en línea.
- Debido a que la modelación con el método de regresión múltiple presenta un menor ajuste a los valores extremos, se realizaron diversas pruebas con el fin de modelar de mejor manera los valores extremos altos. Para ello se consideraron los días con PMCA 4 y 5 debido a la buena relación con altas concentraciones de MP10. A continuación se detallan los ajustes realizados:
- Error estándar: Error estándar estimado en el ajuste de la ecuación de modelación, donde al valor de altas concentraciones asociadas a días de potencial meteorológico alto se le suma el error estándar encontrado en el ajuste lineal de los mínimos cuadrados.

- 2) Error medio absoluto: Es el promedio de la diferencia absoluta entre los valores observados y pronosticados en los días con valores extremos altos (potencial meteorológico alto), para todo el periodo de estudio. El valor obtenido es sumado al valor entregado por el modelo de pronóstico en días de altas concentraciones de PM10.
- 3) **Error criterio**: Es la diferencia absoluta promediada entre los valores observados y pronosticados en días de valores extremos altos, cuando la temperatura mínima esperada para el día a pronosticar sea menor a 4°C., la diferencia obtenida se suma al valor entregado por el modelo de pronóstico. Se utilizó el criterio de temperatura menor a 4 grados, pues al comparar las series de tiempo de temperatura con concentraciones de PM10, bajo este umbral térmico (4°C) se observaron el mayor número de días en que se superó la norma para máximo promedio móvil de 24 horas (150 ug/m3).
- 4) Nueva ecuación ajustada para los valores extremos de PMCA 4 y 5: La nueva ecuación se genera acotando la base de datos sólo a los días con PMCA alto. La ecuación obtenida se emplea en los días de altas concentraciones, mientras que en el resto de los días se aplica la ecuación básica obtenida.
- 5) Nueva ecuación ajustada para los PMCA 4 y 5, que integra la temperatura mínima pronosticada para el día de mañana: Es una ecuación que se ajusta a los PMCA altos considerando la temperatura mínima pronosticada por el modelo regional ETA. Esta ecuación reemplaza a aquellos días con Potencial Meteorológico alto (si el potencial esperado para el día siguiente mayor que 3 y si la temperatura a las 12Z pronosticada por el modelo ETA es menor a 4 grados). mientras que en el resto de los días se aplica la ecuación básica obtenida.

4.4.2 Descripción de las ecuaciones para Padre Las Casas y Las Encinas

Dentro de las ecuaciones generadas en segunda fase del estudio, no se profundizó mayormente en la generación de nuevas ecuaciones para Padre Las Casas, debido a que las condiciones meteorológicas locales difieren a las observadas en Las Encinas, registrándose sistemáticamente concentraciones de MP10 menores en la estación de Padre Las Casas.

En la estación de Las Encinas se realizaron ecuaciones para el día siguiente con la base de datos extendida y se evaluaron conjuntamente a las ya obtenidas por medio de la base de datos de origen. Por otra parte, para las ecuaciones del día actual no se presentan modificaciones debido al buen ajuste conseguido en la primera fase del estudio.

Como se mencionó con anterioridad, también se generaron ecuaciones para el día siguiente en Las Encinas válidas para ser ejecutadas en horas de la tarde, y nuevos ajustes considerando los valores extremos altos de las ecuaciones obtenidas.

A manera de prueba, con la base de datos extendida se generaron nuevas ecuaciones de promedios móviles menores a 24 horas, al igual que lo realizado en la primera fase.

Se consideraron los mejores ajustes encontrados durante esta investigación, previos a la evaluación de las ecuaciones en Las Encinas para el día siguiente. La descripción de las ecuaciones utilizadas para pronóstico del máximo promedio móvil de 24, 8 y 1 hora son las que se muestran en la tabla siguiente.

Tabla 4.4-1 Resumen de las ecuaciones según comuna, variable a pronosticar, día de valides del pronóstico, tipo de ecuación.

Comuna	Variable a pronosticar	Válido	Tipo
		Día actual	con sonda
Padre Las Casas	Máximos promedio móvil 24 horas	Día siguiente	sin sonda
			con sonda
Temuco	Máximos promedio móvil 24 horas	Día actual	sin sonda
			con sonda
		Día siguiente	sin sonda
	Máximos promedio móvil 24 horas. Para		con sonda
	pronóstico en horas de la tarde (18 horas).	Día siguiente	sin sonda
	Máximos promedio móvil 24 horas, que incluye		con sonda
	ajuste a los valores extremos altos.	Día siguiente	sin sonda
			con sonda
	Máximos promedio móvil de 1 y 8 horas.	Día siguiente	sin sonda

Se realizó una evaluación de las diversas salidas obtenidas (con sonda y sin sonda) para el caso de las ecuaciones de 24 horas validas para el día siguiente en la comuna de Temuco. Lo anterior basado en el acierto requerido en el D.S. 59 en cuanto a los niveles de calidad de aire definidos. El acierto es determinado a través del coeficiente de correlación.

La evaluación contempla por una parte sólo las ecuaciones básicas, es decir, con la base de datos original denominada "or", con la base de datos extendida denominada "Bdnva", y las desarrolladas con la base de datos extendidas válidas para ser ejecutadas en horas de la tarde "18". En segunda instancia la evaluación considera los diversos ajustes a los valores extremos de las ecuaciones con la base de datos original "or" y base de datos extendida "Bdnva".

MP24LED1	Pronosticado Sin	Sonda N Variable:	5]
Obiservado i	0	1	2	3	Total	% Acierto]
0	159	1	0	0	160	99.4]
1	5			0		14]
2	2		/1	0	4	25	
3	0	0	0	0/	/0		
Total	166	3	2	Û	/ 171]
% Acierto	95.8	33.3	50.0				
Número a ciertos	161						
% Acierto total	942			.\			
	Alerta			Preemergens	ia	resumen de lo	s aciertos altos
R2 Total Alertas	Total aciertos Acie	erto Total Alertas Fror	os Total Preem		erto Total Preem Pr	onos Valores total	Acierto Valores
observadas		lert s Preeme en		/	reem Alerta		Altos
0.72	2	1 1	4	2	1 1		2
						Ť	Ť
							

Como ejemplo de la evaluación que se resume en las tablas siguientes (Tabla 4.4-2 y Tabla 4.4-3), se toma la ecuación para del día siguiente en Las Encinas con la base se datos extendida sin sonda. Se destacan los niveles de acierto que forman parte de la evaluación de las ecuaciones de Las Encinas para el día siguiente.

A continuación se muestra una tabla resumen con los resultados obtenidos por los distintos modelos para Las Encinas respecto al pronóstico para el día siguiente, tanto para las ecuaciones con sonda y sin sonda. A partir de esta evaluación se eligieron los modelos de pronóstico para Temuco, donde en los modelos con sonda las ecuaciones básicas seleccionadas corresponden a las construidas con la base de datos original "or" (rojo), y la ecuación elaborada para ser ejecutada en las horas de la tarde "18" (azul). En cuanto a los ajustes a valores extremos la ecuación con mejor resultado resultó la que incluye el error criterio "E. criterio" (rojo) en los días con altas concentraciones (ver Tabla 4.4-2).

En los modelos sin sonda como se aprecia en la Tabla 4.4-3 se obtuvieron mejores resultados en la ecuación obtenida a partir de la base de datos extendida "Bnva" (rojo) y la ecuación apta para ser utilizada en las horas de la tarde del día anterior al pronóstico "18" (azul), ambas consideradas como ecuaciones básicas. Respecto al ajuste en los valores extremos, la que presenta mejor acierto a los valores altos es la ecuación ajustada exclusivamente para los valores de potencial alto "Ec Pot 4 y 5" (rojo).

Tabla 4.4-2 Resultados de los modelos de pronóstico para máximos de 24 horas válido para el día siguiente en Las Encinas (Temuco) con variables del sonda de Puerto Montt. (Tepual).

								ECUACIONE	S CON SONDA				
											resumen de le	esumen de los aciertos altos	
			R2	Total Alertas observadas	Total aciertos niveles altos	Acierto Total Alertas	Alertas Pronos Preemergencias	Total Preem observadas	Total aciertos niveles altos	Acierto Total Preem	Preem Pronos Alertas	Valores total Alto	Acierto Valores Altos
		1		Observadas	IIIVeles altos	Aleitas	Freemergencias	Observadas	Iliveles altos	Fieem	Aleitas	Aito	Aitos
	MAXIMO 24h	original	0.7	7	2	2	0	3	2	0	2	10	2
MPLE24D1	día siguiente	Bdnva	0.6	5	1	0	1	3	2	1	1	8	1
		18h	0.7	5	2	1	1	3	1	0	1	8	1
	E. estandar	ajuste (or)	0.7	7	3	3	0	3	2	o	2	10	3
AJUSTE		ajuste (nva)	0.7	5	2	1	1	3	3	2	1	8	3
VALORES	E. medio	ajuste (or)	0.7	7	3	1	2	3	3	0	3	10	1
EXTREMOS	absoluto	ajuste (nva)	0.7	5	2	1	1	3	3	2	1	8	3
(PMCA 4 Y 5)	E. criterio	ajuste (nva)	0.7	5	2	1	1	3	3	2	1	8	3
	Ec min	ajuste (or)	0.7	7	3	2	1	4	3	2	1	11	4
	Pot 4 y 5	ajuste (nva)	0.6	7	3	2	1	4	3	2	1	11	4

Tabla 4.4-3 Resultados de los modelos de pronóstico para máximos de 24 horas válido para el día siguiente en Las Encinas (Temuco), excluyendo de la base de datos las variables del sonda de Puerto Montt. (Tepual).

			ECUACIONES SIN SONDA										
			-		Ale	rta		ECUACIONE		rgencia		recumen de la	os aciertos altos
			R2	Total Alertas	Total aciertos		Alertas Pronos	Total Preem	Total aciertos		Preem Pronos		Acierto Valores
			1112		niveles altos	Alertas	Preemergencias	observadas	niveles altos	Preem	Alertas	Alto	Altos
	MAXIMO 24h	original	0.7	7	2	2	0	4	2	0	2	11	2
MPLE24D1	día siguiente	Bdnva	0.7	7	2	1	1	4	2	1	1	11	2
		18h	0.7	7	3	2	1	4	2	1	1	11	2
	E estandar	ajuste (or)	0.7	7	3	1	2	4	3	1	2	11	2
		ajuste (nva)	0.7	7	3	1	2	4	3	2	1	11	3
AJUSTE	E. medio	ajuste (or)	0.7	7	4	2	2	4	3	2	1	11	4
VALORES	absoluto	ajuste (nva)	0.7	7	3	1	2	4	3	2	1	11	3
EXTREMOS	E criterio	ajuste (or)	0.7	7	4	2	2	4	3	2	1	11	4
(PMCA 4 Y 5)		ajuste (nva)	0.7	7	3	1	2	4	3	2	1	11	3
	Ec. Pot 4 y 5	ajuste (or)	0.7	7	3	3	0	4	3	1	2	11	4
		ajuste (nva)	0.7	7	3	3	0	4	3	1	2	11	4
	Ec min	ajuste (or)	0.7	7	3	2	1	4	3	2	1	11	4
	Pot 4 y 5	ajuste (nva)	0.7	7	3	2	1	4	3	2	1	11	4

En resumen, las ecuaciones propuestas a ser utilizadas operacionalmente como pronóstico para el día actual son cuatro; 2 en Padre Las Casas y 2 en Las Encinas.

Para el pronóstico del día siguiente son ocho; 2 para Padre Las Casas y 6 para Las Encinas, las cuales se describen (clasifican) en la siguiente tabla.

Tabla 4.4-4 Detalle de las ecuaciones propuestas para el pronóstico operacional.

Comuna	Variable a pronosticar	Válido	Tipo
Padre Las	Máximos promedio móvil 24 horas	Día actual	(a) con sonda, B.D. original
Casas			(b) sin sonda, B.D. original
		Día siguiente	(c) con sonda, B.D. original
			(d) sin sonda, B.D. original
			(e) con sonda, B.D. original
Temuco	Máximos promedio móvil 24 horas	Día actual	(f) sin sonda, B.D. original
			(g) con sonda, B.D. original
		Día siguiente	(h) sin sonda, B.D. extendida
	Máximos promedio móvil 24 horas.		(i) con sonda, B.D. extendida
	Para pronóstico en horas de la tarde.	Día siguiente	(j) sin sonda, B.D. extendida
	Máximos promedio móvil 24 horas,		(k) con sonda, Error Criterio
	que incluye ajuste a los valores	Día siguiente	(l) sin sonda, Ecuación para
	extremos altos.		valores extremos
	Máximos promedio móvil de 8 horas.	Día siguiente	(m) con sonda
	Máximos promedio móvil de 1 horas.	Día siguiente	(n) sin sonda

4.4.3 Evaluación de las ecuaciones de pronóstico para promedios móviles máximos de 24 horas en Las Encinas y Padre Las Casas

Se evaluaron y validaron con el año 2006 las ecuaciones para las máximas concentraciones promedio móvil de 24 horas, mediante tablas de contingencias para los niveles críticos establecidos a partir de los niveles de emergencia ambiental estipulados en el DS N°59 Artículo 3.

En este decreto se especifica que el nivel 1° se encuentra en un rango de 195 y 239 μg/m³, nivel 2° entre 240 y 329 μg/m³ y el nivel 3° igual o superior a 330 μg/m³. Por otra parte, la norma primaria de calidad de aire para MP10 según el DS N°59 Artículo 2 establece un valor de 150 μg/m³ como concentración de 24 horas, valor denominado como el límite inferior de la categoría Regular. A continuación se presenta una tabla con los valores establecidos en el DS N°59 asociados con condiciones de ventilación y tipo de evento de contaminación por MP10 (Tabla 4.4-5) y la Tabla 4.4-6 donde se tipifica los niveles de evaluación de los modelos obtenidos para la ciudad de Temuco respecto al DS N°59.

Tabla 4.4-5 Niveles según el D.S. N°59.

Niveles de calidad de aire	Condición de	Tipo de Episodios
para MP10 (μ g/m ³)	Ventilación	(niveles)
concentraciones 0 - 149	Bueno	No hay
150 - 194	Regular	No hay
195 - 239	Malo	Alerta
240 - 329	Crítico	Preemergencia
Mayor o igual a 330	Peligroso	Emergencia

Tabla 4.4-6 Niveles basados en el D.S. N°59.

Tipificación	Niveles de calidad de aire para	Tipo de Episodios
	MP10 ($\mu g/m^3$)	(niveles)
0	0 - 194	Bueno a Regular
1	195 - 239	Alerta
2	240 - 329	Preemergencia
3	Mayor o igual a 330	Emergencia

En la tabla de contingencia que se muestra a continuación, las columnas corresponden al valor pronosticado por categoría y las filas al valor observado. Las columnas incluyen el pronóstico por cada categoría, la suma de los casos observados por categoría y la tasa de detección o nivel de acierto. Las filas incluyen el valor observado en cada categoría, la suma de los días pronosticado en cada categoría y el acierto de los pronósticos por categoría. La diagonal de la tabla de contingencia es el acierto total en cada categoría que al dividirlo por el número total de casos corresponde al acierto total del modelo (última fila de la tabla).

Tabla 4.4-7 Diagrama de tabla de contingencia para categorías definidas en el DS Nº 59.

Tabla de contingencia							
Período 2006	Pronos 0	Pronos 1	Pronos 2	Pronos 3	Suma Obs	Tasa de Detección %	
Obs 0	a_0	b_0	c_0	d_0	$\sum 0$	$\frac{a_0}{\sum 0}$	
Obs 1	a_I	b_1	c_1	d_1	$\sum 1$	$\frac{b_1}{\sum 1}$	
Obs 2	a_2	b_2	c_2	d_2	$\sum 2$	$\frac{\sum_{1}^{c_{1}}}{\sum_{2}}$	
Obs 3	a_3	b_3	c_3	d_3	$\sum 3$	$\frac{d_3}{\sum 3}$	
Suma pronóstico	$\sum a$	$\sum b$	$\sum c$	$\sum d$	\sum_{casos}^{total}		
Acierto pronóstico%	$\frac{a_0}{\sum a}$	$\frac{b_1}{\sum b}$	$\frac{c_2}{\sum c}$	$\frac{d^3}{\sum d}$			
Total detecciones	(a ₀ + b ₁ + c ₂ + d ₃)						
% Acierto Total	$\frac{(a_0+b_1+c_2+d_3)}{\sum Total_casos}$						

4.4.4 Resultados ecuaciones de pronóstico MP10 máximo móvil 24h para la estación de Padre Las Casas

En esta sección se muestran los resultados obtenidos para las ecuaciones de Padre Las Casas validados con las observaciones del año 2006, obteniéndose 2 ecuaciones para el día actual y 2 para el día siguiente:

a) Ecuación para Padre Las Casas con sonda válido para día actual

MPLE24D0=-3.585+0.824*MPPL2406L+9.321*IMD0 -1.079*SDIR928L +0.234*SDIR5008L -0.735*DTA5008L

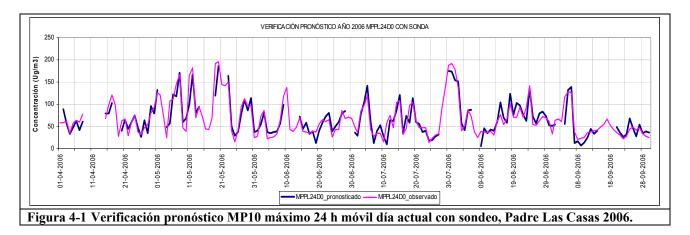

MPPL24D0	Valor Máximo Móvil de 24 horas MP10 de hoy en la estación Padre Las Casas
MPPL2406L	Valor Móvil de 24 horas MP10 a las 05 horas local en la estación de Padre Las
WIFF L2400L	Casas
IMD0	PMCA pronosticado para hoy
SDIR928L	Seno de la Dirección del Viento del nivel de 925 hPa hoy a las 08:00 H local Sonda
SDIK928L	Puerto Montt
SDIR5008L	Seno de la Dirección del Viento del nivel de 500 hPa hoy a las 08:00 H local Sonda
SDIKSUUSL	Puerto Montt
DTA5008L	Diferencia entre ayer y hoy de la Temperatura del nivel de 500 hPa a las 08:00 H
DIASUUOL	local Sonda Puerto Montt

Tabla 4.4-8 Resultados de la ecuación ajustada MPPL24D0 con sondeo para Padre Las Casas.

MP24PLD0	Pronosticado con Sonda					
Observado	0	1	2	3	Total	% Acierto
0	148	0	0	0	148	100.0
1	1	0	0	0	1	0
2	0	0	0	0	0	
3	0	0	0	0	0	
Total	149	0	0	0	149	
%Acierto	99.3					
Número aciertos	148					
% Acierto total	99.3					

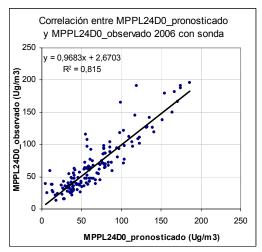


Figura 4-2 Diagrama de dispersión MPPL24D0 observado y pronosticado con sondeo, Padre Las Casas 2006.

b) Ecuación para Padre Las Casas sin sonda válido para día actual

MPLE24D0=3.988+0.966*MPPL2406L+6.459*IMD0 +0.108*MPPL24DA -0.046*P1HMAXPLDA-0.678*TMNDOPL

MPPL24D0	Valor Máximo Móvil de 24 horas MP10 de hoy en la estación Padre Las Casas
MPPL2406L	Valor Móvil de 24 horas MP10 a las 05 horas local en la estación de Padre Las
WIFFL2400L	Casas
IMD0	PMCA pronosticado para hoy
MPPL24DA	Valor Máximo Móvil de 24 horas MP10 de ayer en la estación de Padre Las Casas
MP1HMAXPLDA	Valor Máximo de 1 hora en el día de MP10 en la estación de Padre Las Casas día
WITTIIWIAATLDA	anterior.
TMNDOPL	Temperatura Mínima del día de hoy en estación Padre Las Casas

Tabla 4.4-9 Resultados de la ecuación ajustada MPPL24D0 sin sondeo para Padre Las Casas.

MP24PLD0	Pronosticado Sin Sonda					
Observado	0	1	2	3	Total	% Acierto
0	174	1	0	0	175	99.4
1	0	1	0	0	1	100
2	0	0	0	0	0	
3	0	0	0	0	0	
Total	174	2	0	0	176	
% Acierto	100.0	50.0				
Número aciertos	175		•			
% Acierto total	99.4					

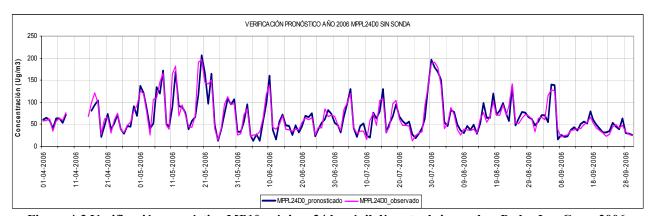


Figura 4-3 Verificación pronóstico MP10 máximo 24 h móvil día actual sin sondeo, Padre Las Casas 2006.

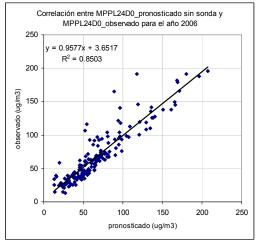


Figura 4-4 Diagrama de dispersión MPPL24D0 observado y pronosticado sin sondeo, Padre Las Casas 2006.

c) Ecuación para Padre Las Casas con sonda válido para día siguiente

MPLE24D1=2.657+20.025*IMD1+0.261*MPPL2412L+1.877*DT92PL

MPLE24D1	Valor Máximo Móvil de 24 horas MP10 para mañana en la estación Padre Las Casas
IMD1	PMCA pronosticado para mañana
MPPL2412L	Valor Móvil de 24 horas MP10 a las 11 horas local en la estación de Padre Las Casas
DT92PL	Diferencia entre la temperatura de 925 hPa de sonda Puerto Montt y temperatura mínima Padre Las Casas

Tabla 4.4-10 Resultados de la ecuación ajustada MPPL24D1 con sondeo para Padre Las Casas.

MP24PLD1	Pronosticado Con Sonda					
Observado	0	1	2	3	Total	% Acierto
0	157	0	0	0	157	100.0
1	1	0	0	0	1	0
2	0	0	0	0	0	
3	0	0	0	0	0	
Total	158	0	0	0	158	
%Acierto	99.4					
Número aciertos	157		-			-
% Acierto total	99.4					

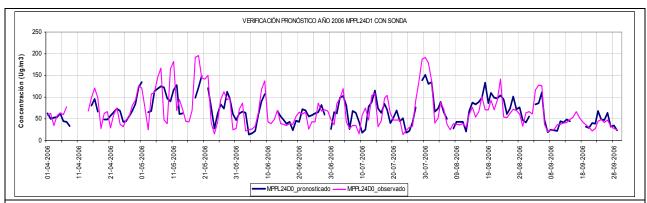


Figura 4-5 Verificación pronóstico MP10 máximo 24 h móvil día siguiente con sondeo, Padre Las Casas 2006.

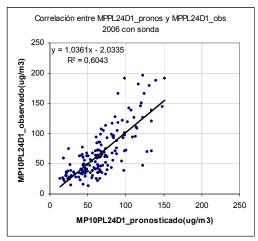


Figura 4-6 Diagrama de dispersión MPPL24D1 observado y pronosticado con sondeo, Padre Las Casas 2006.

d) Ecuación para Padre Las Casas sin sonda válido para día siguiente

MPPL24D1=-6.474+ 0.923*MPPL2412L+16.536*IMD1-0.260* MPPL0602L -2.256* TMNDOPL + 1.277*TMXDAPL

MPPL24D1	Valor Máximo Móvil de 24 horas MP10 para mañana en la estación Padre Las Casas
MPPL2412L	Valor Móvil de 24 horas MP10 a las 11 horas local en la estación de Padre Las Casas
IMD1	PMCA pronosticado para mañana
MPPL0602L	Valor Móvil de 06 horas MP10 a las 01 hora de mañana en la estación de Padre Las Casas
TMNDOPL	Temperatura Mínima del día de hoy en estación Padre Las Casas
TMXDAPL	Temperatura Máxima del día de ayer en estación Padre Las Casas

Tabla 4.4-11 Resultados de la ecuación ajustada MPPL24D1 sin sondeo para Padre Las Casas.

MP24PLD1	Pronosticado Sin Sonda					
Observado	0	1	2	3	Total	% Acierto
0	173	0	0	0	173	100.0
1	1	0	0	0	1	0
2	0	0	0	0	0	
3	0	0	0	0	0	
Total	174	0	0	0	174	
% Acierto	99.4					
Número aciertos	173					
% Acierto total	99.4					

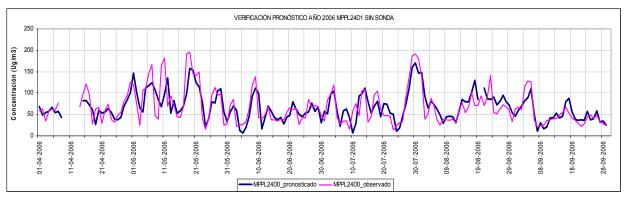


Figura 4-7 Verificación pronóstico MP10 máximo 24 h móvil día siguiente sin sonda, Padre Las Casas 2006.

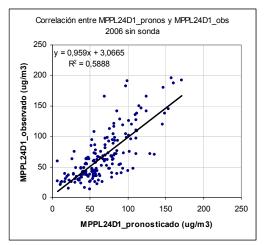


Figura 4-8 Diagrama de dispersión MPPL24D1 observado y pronosticado sin sondeo, Padre Las Casas 2006.

4.4.5 Resultados ecuaciones de pronóstico MP10 máximo móvil 24h para la estación de Las Encinas

A continuación se muestran los resultados obtenidos para las ecuaciones de pronóstico para máximas concentraciones de PM10 promedio móvil de 24 horas en la estación de Las Encinas, tanto para el máximo del día actual como del día siguiente.

e) Ecuación para Las Encinas (Temuco) con sonda válido para día actual

MPLE24D0= 17.790+0.729*MP24LE06L+8.145*IMD0+0.109*MPMAX12HLEDA -1.568*TMNDOLE-0.027*WD9208L

MPLE24D0	Valor Máximo Móvil de 24 horas MP10 de hoy en la estación de Las Encinas
MP24LE06L	Valor Móvil de 24 horas MP10 a las 05 horas local en la estación de Las Encinas
IMD0	PMCA pronosticado para hoy
MPMAX12HLEDA	Valor Máximo Móvil de 12 horas MP10 en la estación de Las Encinas día anterior.
TMNDOLE	Temperatura Mínima del día de hoy en estación Las Encinas
WD9208L	Dirección del Viento del nivel de 925 hPa hoy a las 08:00 H local Sonda Puerto Montt

Tabla 4.4-12 Resultados de la ecuación ajustada MPLE24D0 con sondeo para Las Encinas.

MP24LED0	Pronosticado Cor	n Sonda				
Observado	0	1	2	3	Total	% Acierto
0	147	2	0	0	149	98.7
1	3	1	0	0	4	25
2	0	2	3	0	5	60
3	0	0	0	0	0	
Total	150	5	3	0	158	
% Acierto	98.0	20.0	100.0			
Número aciertos	151					
% Acierto total	95.6					

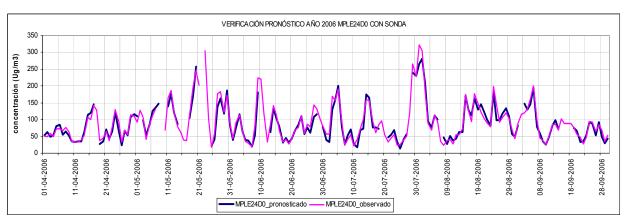


Figura 4-9 Verificación pronóstico MP10 máximo 24 h móviles día actual con sondeo, Las Encinas 2006.

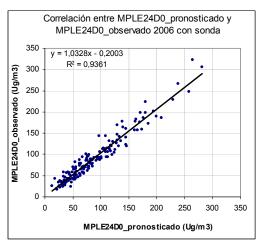


Figura 4-10 Diagrama de dispersión MPLE24D0 observado y pronosticado con sondeo, Las Encinas 2006.

f) Ecuación para Las Encinas (Temuco) sin sonda válido para día actual

MPLE24D0=-6.569+0.910*MP24LE06L+10.256*IMD0+0.039*MPMAXLE06DA -0.073*MPLE0602L+0.041*MP1HMAXLEDA

MPLE24D0	Valor Máximo Móvil de 24 horas MP10 de hoy en la estación de Las Encinas
MP24LE06L	Valor Móvil de 24 horas MP10 a las 05 horas local en la estación de Las Encinas
IMD0	PMCA pronosticado para hoy
MPMAXLE06DA	Valor Máximo Móvil de 06 horas MP10 en la estación de Las Encinas día anterior.
MPLE0602L	Valor Móvil de 06 horas MP10 a la 01 hora local en la estación de Las Encinas
MP1HMAXLEDA	Valor Máximo de 1 hora en el día de MP10 en la estación de Las Encinas día
METHMAALEDA	anterior.

Tabla 4.4-13 Resultados de la ecuación ajustada MPLE24D0 sin sondeo para Las Encinas.

MP24LED0	Pronosticado Sin	Sonda				
Observado	0	1	2	3	Total	% Acierto
0	164	2	0	0	166	98.8
1	4	1	1	0	6	17
2	0	1	4	0	5	80
3	0	0	0	0	0	
Total	168	4	5	0	177	
% Acierto	97.6	25.0	80.0			
Número aciertos	169				_	_
% Acierto total	95.5					

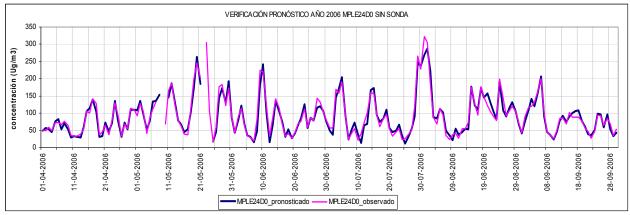


Figura 4-11 Verificación pronóstico MP10 máximo 24 h móvil día actual sin sondeo, Las Encinas 2006.

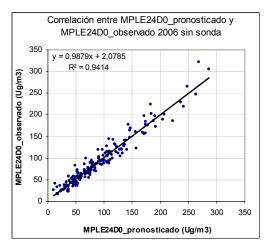
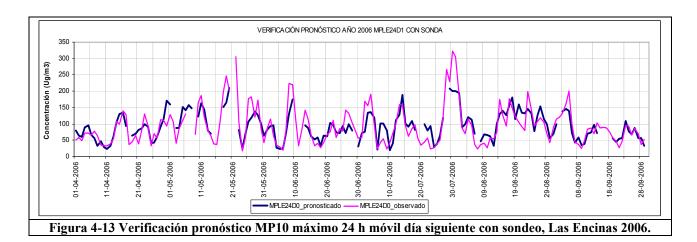


Figura 4-12 Diagrama de dispersión MPLE24D0 observado y pronosticado sin sondeo, Las Encinas 2006.

g) Ecuación para Las Encinas (Temuco) con sonda válido para día el siguiente


MPLE24D1=37.950+24.728*IMD1-5.388*TMNDOLE+0.083*MPLE0602L + 1.845*TA9208L

MPLE24D1	Valor Máximo Móvil de 24 horas MP10 de mañana en la estación de Las Encinas
IMD1	PMCA pronosticado para mañana
TMNDOLE	Temperatura Mínima del día de hoy en estación Las Encinas
MPLE0602L	Valor Móvil de 06 horas MP10 a la 01 hora local en la estación de Las Encinas
TA9208L	Temperatura del nivel de 925 hPa hoy a las 08:00 H local Sonda Puerto Montt

Tabla 4.4-14 Resultados de la ecuación ajustada MPLE24D1 con sondeo para Las Encinas.

MP24LED1	Pronosticado Co	n Sonda				
Observado	0	1	2	3	Total	%Acierto
0	149	0	0	0	149	100.0
1	5	2	0	0	7	29
2	1	2	0	0	3	0
3	0	0	0	0	0	
Total	155	4	0	0	159	
%Acierto	96.1	50.0				
Número aciertos	151					
%Aciento total	95.0					

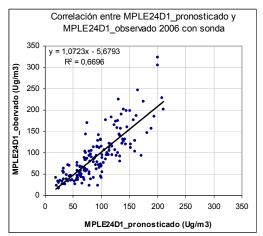


Figura 4-14 Diagrama de dispersión MPLE24D1 observado y pronosticado con sondeo, Las Encinas 2006.

h) Ecuación para Las Encinas (Temuco) sin sonda válido para día el siguiente base de datos extendida

MPLE24D1= -5.828 + 23.750*IMD1 + 0.119*MPLE0806D0 - 4.301* TMND0LE + 9.310*IMD0 + 2.829* TMND0LEDA + 0.228* MPLE0612DA

MPLE24D1	Valor Máximo Móvil de 24 horas MP-10 de mañana en la estación de Las Encinas
IMD1	PMCA pronosticado para mañana
MPLE0806D0	Valor Móvil de 8 horas MP-10 a las 5 horas local de hoy en la estación de Las Encinas
TMND0LE	Temperatura Mínima del día de hoy en estación Las Encinas.
IMD0	PMCA pronosticado para hoy.
TMND0LEDA	Temperatura Mínima del día de ayer en estación Las Encinas.
MPLE0612DA	Valor Móvil de 6 horas MP-10 a las 11 horas local de ayer en la estación de Las Encinas.

Tabla 4.4-15 Resultados de la ecuación ajustada MPLE24D1 sin sondeo para Las Encinas.

MP24LED1	Pronosticado Sin	Sonda N Variables				_
Observado	0	1	2	3	Total	% Acierto
0	159	1	0	0	160	99.4
1	5	1	1	0	7	14
2	2	1	1	0	4	25
3	0	0	0	0	0	
Total	166	3	2	0	171	
% Acierto	95.8	33.3	50.0			
Número aciertos	161					
% Acierto total	04.2					

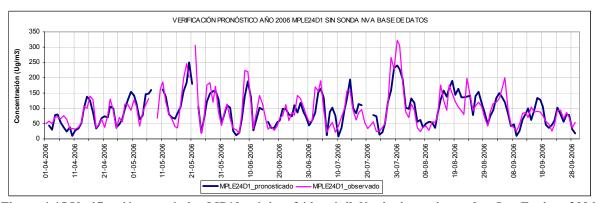


Figura 4-15 Verificación pronóstico MP10 máximo 24 h móvil día siguiente sin sondeo, Las Encinas 2006.

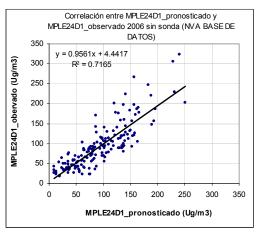


Figura 4-16 Diagrama de dispersión MPLE24D1 observado y pronosticado sin sondeo, Las Encinas 2006.

i) Ecuación para Las Encinas (Temuco) con sonda válido para día el siguiente para ejecutar en horas de la tarde (18h)

 $\begin{aligned} & \text{MPLE24D1= } 20.347 + 19.55* \\ & \text{IMD1} - 0.059* \\ & \text{DP8508L} - 3.180* \\ & \text{TMND0LE} \\ & + 0.122* \\ & \text{MPLE0606D0} - 0.078* \\ & \text{DDP8508L} + 0.438* \\ & \text{MPLE0618D0} \end{aligned}$

MPLE24D1	Valor Máximo Móvil de 24 horas MP-10 de mañana en la estación de Las Encinas
IMD1	PMCA pronosticado para mañana
DP8508L	Depresión de temperatura al nivel de 850 hPa para el día de hoy a las 8 hora local Sonda Puerto Montt
TMND0LE	Temperatura Mínima del día de hoy en estación Las Encinas
MPLE0606D0	Valor Móvil de 06 horas MP-10 a la 05 hora local de hoy en la estación de Las Encinas
DDP8508L	Diferencia entre ayer y hoy de la depresión de temperatura al nivel de 850 hPa a las 8 hora local Sonda Puerto Montt
MPLE0618D0	Valor Móvil de 06 horas MP-10 a la 17 hora local de hoy en la estación de Las Encinas

Tabla 4.4-16 Resultados de la ecuación ajustada MPPL24D1 con sondeo para Las Encinas.

MP24LED1	Pronosticado Cor	Sonda_18 Hrs				
Observado	0	1	2	3	Total	% Acierto
0	135	2	0	0	137	98.5
1	3	1	1	0	5	20
2	2	1	0	0	3	0
3	0	0	0	0	0	
Total	140	4	1	0	145	
% Acierto	96.4	25.0	0.0			
Número aciertos	136					
% Acierto total	03.8					

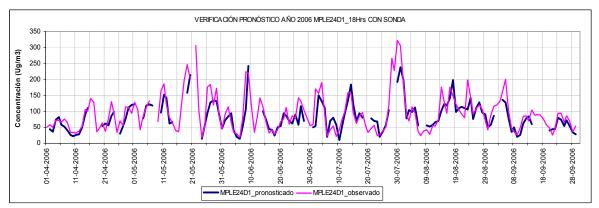


Figura 4-17 Verificación pronóstico MP10 máximo 24 h móvil día siguiente con sonda, Las Encinas 2006.

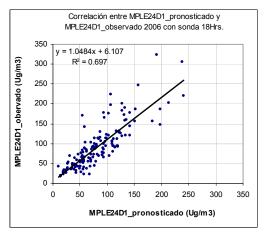


Figura 4-18 Diagrama de dispersión MPLE24D1 observado y pronosticado con sondeo, Las Encinas 2006.

j) Ecuación para Las Encinas sin sonda válido para día el siguiente para ejecutar en horas de la tarde (18h)

MPLE24D1=-3.443+31.041*IMD1+0.803* MPLE1218L -6.981*DIFIM-1.996 *TMND0LE+ 0.066*MPLE0606D0 -0.270* MPLE0612D0

MPLE24D1	Valor Máximo Móvil de 24 horas MP-10 de mañana en la estación de Las Encinas
IMD1	PMCA pronosticado para mañana
MPLE1218L	Valor Móvil de 12 horas MP-10 a las 17 horas local de hoy en la estación de Las
	Encinas
DIFIM	Diferencia entre hoy y el día siguiente del PMCA
TMND0LE	Temperatura Mínima del día de hoy en estación Las Encinas
MPLE0606D0	Valor Móvil de 6 horas MP-10 a las 5 horas local de hoy en la estación de Las Encinas

MPLE0612D0	Valor Móvil de 6 horas MP-10 a las 11 horas local de hoy en la estación de Las
	Encinas

Tabla 4.4-17 Resultados de la ecuación ajustada MPPL24D1 sin sondeo para Las Encinas.

MP24LED1	Pronosticado Sin	Sonda_18 Hrs				
Observado	0	1	2	3	Total	% Acierto
0	159	3	0	0	162	98.1
1	4	2	1	0	7	29
2	2	1	1	0	4	25
3	0	0	0	0	0	
Total	165	6	2	0	173	
% Acierto	96.4	33.3	50.0			
Número aciertos	162					
% Acierto total	93.6					

Figura 4-19 Verificación pronóstico MP10 máximo 24 h móvil día siguiente sin sonda, Las Encinas 2006.

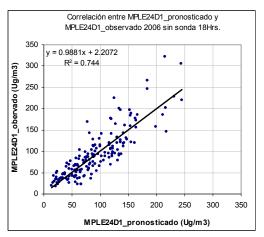


Figura 4-20 Diagrama de dispersión MPLE24D1 observado y pronosticado sin sondeo, Las Encinas 2006.

k) Ecuación para Las Encinas con sonda válido para día el siguiente con ajuste en los valores extremos según error criterio

MPLE24D1= 24.989 + 18.342*IMD1 -4.742*TMND0LE + 0.127* MPLE0606D0 + 1.282* Showalter -0.733* DECLIN -0.122* DDP8508L + 0.145* MPLE1200DA -0.081* DH8508L

MPLE24D1	Valor Máximo Móvil de 24 horas MP10 para mañana en la estación Las Encinas
IMD1	PMCA pronosticado para mañana
TMNDOLE	Temperatura Mínima del día de hoy en estación Las Encinas
MPLE0606D0	Valor Móvil de 06 horas MP10 a las 05 hora de mañana en la estación de Las Encinas
Showalter	Índice de estabilidad atmosférica obtenido a partir del Radiosondeo de Puerto Montt
DECLIN	Declinación solar
DDP8508L	Diferencia de la depresión del punto de roció entre el día actual y día anterior en el nivel de 850 hpa en el sonda de Puerto Montt
MPLE1200DA	Valor Móvil de 12 horas MP10 a las 23 horas del día anterior en la estación de Las Encinas
DH8508L	Diferencia de altura el día actual y día anterior en el nivel de 850 hpa en el sonda de Puerto Montt

ERROR CRITERIO: A los valores PMCA altos se les suma 36.8 μg/m3

Tabla 4.4-18 Resultados de la ecuación ajustada MPPL24D1 con sondeo para Las Encinas.

Año 2006	Pronosticado MP	LE24D1_pronos_	CS_EA_TMIN			
Observado	0	1	2	3	Total	% Acierto
0	132	0	0	0	132	100.0
1	3	1	1	0	5	20
2	0	1	2	0	3	67
3	0	0	0	0	0	
Total	135	2	3	0	140	
% Acierto	97.8	50.0	66.7			
Número aciertos	135					
% Acierto total	96.4					

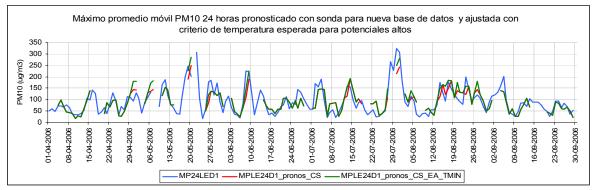


Figura 4-21 Verificación pronóstico MP10 máximo 24 h móvil día siguiente con sonda, Las Encinas 2006.

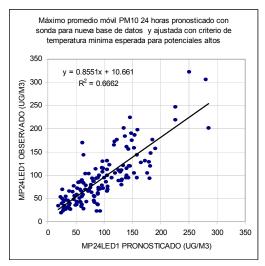


Figura 4-22 Diagrama de dispersión MPLE24D1 observado y pronosticado con sondeo, Las Encinas 2006.

l) Ecuación para Las Encinas sin sonda válido para día el siguiente con nueva ecuación de ajuste en los valores extremos

(A) MPLE24D1=74.101 - 11.341*TMND0LE -3.547*DECLIN +0.191*MPLE0806DA +6.6*TMND0LEDA

TMND0LE	Temperatura Mínima del día de hoy en estación Las Encinas.
DECLIN	Declinación solar del día actual.
MPLE0806DA	Valor Móvil de 8 horas MP-10 a la 5 hora local en la estación de Las Encinas del día de ayer.
TMND0LEDA	Temperatura Mínima del día de ayer en estación Las Encinas

El ajuste consta de dos ecuaciones:

Ecuación predictiva para el día siguiente (B) + Nueva ecuación ajustada para los valores extremos altos (A)

(B) MPLE24D1= -5.828 + 23.750*IMD1 + 0.119*MPLE0806D0 - 4.301*TMND0LE + 9.310*IMD0+ 2.829*TMND0LEDA+0.228*MPLE0612DA

MPLE24D1	Valor Máximo Móvil de 24 horas MP10 para mañana en la estación Las Encinas
IMD1	PMCA pronosticado para mañana
MPLE0806D0	Valor Móvil de 8 horas MP-10 a la 5 hora local en la estación de Las Encinas del día actual.
TMND0LE	Temperatura Mínima del día de hoy en estación Las Encinas
IMD0	PMCA pronosticado para hoy
TMND0LEDA	Temperatura Mínima del día de ayer en estación Las Encinas
MPLE0612DA	Valor Móvil de 6 horas MP-10 a las 12 horas local en la estación de Las Encinas del día de ayer.

Tabla 4.4-19 Resultados de la ecuación ajustada MPPL24D1 sin sondeo para Las Encinas.

Año 2006	Pronosticado MP24LED1_FU					
Observado	0	1	2	3	Total	% Acierto
0	155	4	0	0	159	97.5
1	4	3	0	0	7	43
2	1	2	1	0	4	25
3	0	0	0	0	0	
Total	160	9	1	0	170	
% Acierto	96.9	33.3	100.0			
Número aciertos	159					
% Acierto total	93.5					

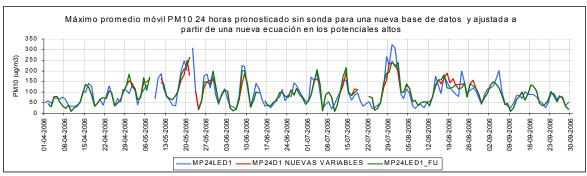


Figura 4-23 Verificación pronóstico MP10 máximo 24 h móvil día siguiente sin sonda, Las Encinas 2006.

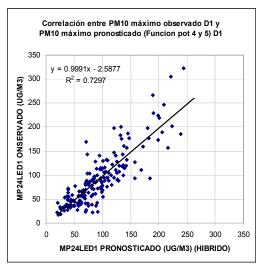


Figura 4-24 Diagrama de dispersión MPLE24D1 observado y pronosticado sin sondeo, Las Encinas 2006.

4.4.6 Resultado de ecuaciones experimentales de pronóstico de MP10 para promedio menores a 24 horas

Método de evaluación para promedios móviles menores a 24 horas

El método de evaluación en las concentraciones horarias de MP10, está determinado a través de diversos estudios que plantean los límites de concentración horaria que generan problemas de salud de la población. Tal como lo plantea Dockery (1993), quien notó que por cada aumento de 10 μg/m³ de MP10 las admisiones hospitalarias por causas respiratorias aumentan en 0.8%, las atenciones de urgencia en 1.0% y las consultas de urgencia por ataques asmáticos aumentan en 3.4%. Otros estudios hacen referencia a la exposiciones agudas a MP10, donde en 29 ciudades de Europa (Katsouyanni et al, 2001) y en 20 ciudades de Estados Unidos (Samel et al, 2000) han reportado aumentos de mortalidad por exposición a MP10 de 0.62% y 0.46% respectivamente por cada incremento de 10 μg/m³. Estudios similares en ciudades de Asia han reportado efectos de 0.49%, por lo tanto, una concentración de 150 podría relacionarse fuertemente con un aumento de 5% en la mortalidad diaria (WHO, 2005).

Los limites de valores horarios considerando un efecto de salud negativo en la población, están determinados considerando un aumento de $10~\mu g/m^3$ por cada hora en el día, es decir, a partir de la norma primaria de MP10 según el DS N°59 es de $150~\mu g/m^3$, el aumento progresivo hasta $240~\mu g/m^3$ determina los limites definidos para la evaluación del modelo de concentraciones horarias, tomando este modelo como un indicador operacional dentro del período de pronóstico en Temuco. Los límites fijados para los valores horarios de concentraciones de MP10 se aprecian en la Tabla 4.4-20.

Tabla 4.4-20 Evaluación de niveles de emergencia propuesto para máximos horarios de MP10 en base al D.S. 59.

Tipificación	Niveles de calidad de aire para MP10 horario (µg/m³)	Tipo de Evaluación (niveles)
1	0 - 149	Bueno
2	150 - 389	Regular
3	390 - 629	Malo
4	630 - 819	Crítico
5	Mayor o igual a 820	Peligroso

Para los promedios móviles de 8 horas se toma referencia los valores fijados en el DS N°59, donde se hace una proyección considerando el promedio acumulado del día. Si se asume que para alcanzar el límite de Regular como promedio de 24 horas debería tenerse idealmente un valor 150 $\mu g/m^3$ en cada hora, que en 24 horas correspondería a un valor acumulado de 3600 $\mu g/m^3$.

Bajo este supuesto si en 16 horas se acumulan 2400 μg/m³ (150 μg/m³ en cada hora), en las 8 horas restantes completando el promedio móvil de 24 horas, con 1200 μg/m³ acumulados se llegará al nivel de Regular. Si se acumularan 2280 μg/m³ se alcanzará el nivel de alerta, si la acumulación alcanzara a 3360 μg/m³ se llegaría al nivel de preemergencia y si en las restantes 8 horas se acumularan 5520 μg/m³ se alcanzaría el nivel de emergencia.

Estos valores llevados a promedios de 8 horas se proyectan en valores de 150 μ g/m³ para Regular, 285 μ g/m³ para alerta, 420 μ g/m³ para preemergencia y 690 μ g/m³ para emergencia. En la tabla siguiente (¡Error! No se encuentra el origen de la referencia.) se detallan los límites establecidos para un promedio móvil de 8 horas.

Tabla 4.4-21 Evaluación de niveles de emergencia propuestos para máximos horarios de MP10 en base al D.S. 59.

	Niveles de calidad de aire	Tipo de Evaluación
Tipificación	para MP10 8 horas (μg/m³)	(niveles)
1	concentraciones 0 - 149	Bueno
2	150 - 284	Regular
3	285 - 419	Malo
4	420 - 689	Crítico
5	Mayor o igual a 690	Peligroso

m) Ecuación para Las Encinas sin sonda promedio móvil de 8 horas válido para el día siguiente

MPMAX08HLED1= -44.752 + 69.047* IMD1 - 6.831* TMND0LE - 15.222* DIFIM + 5.504* TMDD0LEDA + 0.317* MPLE0612DA

MPMAX08HLED1	Valor máximo de MP10 Promedio móvil de 8 horas para el día siguiente.				
IMD1	PMCA pronosticado para mañana.				
TMND0LE	Temperatura Mínima del día de hoy en estación Las Encinas.				
DIFIM Diferencia entre hoy y del día siguiente del PMCA.					
TMDD0LEDA	Temperatura Mínima del día de ayer en estación Las Encinas				
MPLE0612DA	Valor Móvil de 6 horas MP-10 a las 12 horas local en la estación de Las Encinas del día de ayer.				

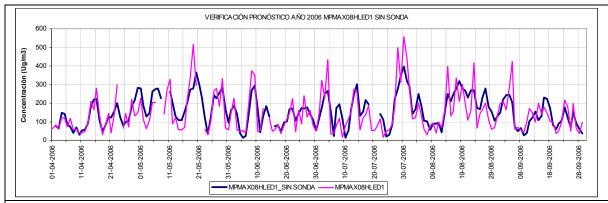


Figura 4-25 Verificación pronóstico MP10 máximo 8 h móvil día siguiente sin sonda, Las Encinas 2006.

Tabla 4.4-22 Resultados de la ecuación ajustada para promedio móvil de 8 horas sin sondeo válido para el día siguiente en Las Encinas.

Año 2006	Pronosticado MPMAX08HLED1 Sin Sonda						
Observado	1	2	3	4	5	Total	% Acierto
1	78	29	0	0	0	107	72.9
2	10	30	3	0	0	43	70
3	0	10	3	0	0	13	23
4	0	4	2	0	0	6	0.0
5	0	0	0	0	0	0	
Total	88	73	8	0	0	169	
% Acierto	88.6	41.1	37.5				
Número aciertos	111					•	
% Acierto total	65.7						

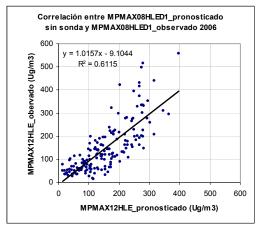


Figura 4-26 Diagrama de dispersión MPMAX08HLED1 observado y pronosticado sin sondeo, Las Encinas 2006.

n) Ecuación para Las Encinas sin sonda promedio móvil de 1 hora válido para el día siguiente

$$\begin{aligned} \text{MPMAX01HLED1} &= -86.879 + 121.825* \text{ IMD1} + 0.575* \text{ MPLE0812DA} \\ &\quad - 0.446* \text{ MPLE0818DA} \end{aligned}$$

MPMAX01HLED1	Valor máximo de MP10 Promedio móvil de 1 horas para el día siguiente.
IMD1	PMCA pronosticado para mañana.
MPLE0812DA	Valor Móvil de 8 horas MP-10 a las 12 horas local en la estación de Las Encinas del día de ayer.
MPLE0818DA	Valor Móvil de 8 horas MP-10 a las 18 horas local en la estación de Las Encinas del día de ayer.

Tabla 4.4-23 Resultados de la ecuación ajustada máximo valor horario sin sondeo para Las Encinas.

Año 2006	Pronosticado MPMAX01HLED1_Sin Sonda						
Observado	1	2	3	4	5	Total	% Acierto
1	38	31	0	0	0	69	55.1
2	3	58	11	0	0	72	81
3	0	5	17	0	0	22	77
4	0	2	5	0	0	7	0.0
5	0	0	1	1	0	2	0.0
Total	41	96	34	1	0	172	
% Acierto	92.7	60.4	50.0	0.0			
Número aciertos	113			_			
% Acierto total	65.7						

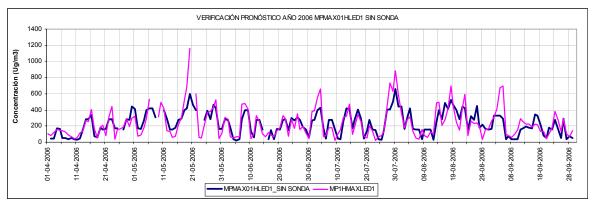


Figura 4-27 Verificación pronóstico MP10 máximo 1 h móvil día siguiente sin sonda, Las Encinas 2006.

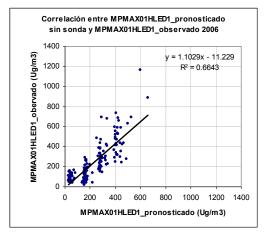


Figura 4-28 Diagrama de dispersión MPMAX01HLED1 observado y pronosticado sin sondeo, Las Encinas 2006.

5 Conclusiones y Recomendaciones

Los resultados, conclusiones y recomendaciones más relevantes en este estudio son:

- Las ecuaciones de pronóstico incluyen como variable explicativa el Potencial Meteorológico de Contaminación Atmosférica pronosticado PMCA, que corresponde a una de las variables más importantes dentro de las ecuaciones ajustadas. Esta variable, a diferencia de las otras, tiene la característica de flexibilidad y predictabilidad que permite proyectar y modificar la predicción por medio del pronóstico de las condiciones de ventilación en Temuco. El PMCA se caracteriza por sintetizar el análisis sinóptico enfocado a calidad de aire y su determinación está sujeta a la decisión de un meteorólogo experto.
- Entre las variables predictivas que aparecen con mayor peso en las ecuaciones de pronóstico, sin considerar para este análisis el PMCA, están las relacionadas con variables meteorológicas a escala local. Principalmente la temperatura mínima, además de aquellas relacionadas con promedios móviles de MP10 a horas fijas, próxima a la corrida de los modelos. Estas variables registran las horas de la noche e inicios de la madrugada, que de alguna forma dan cuenta del comportamiento del pick nocturno que determina los episodios de contaminación.
- En base al análisis de acierto con énfasis en días de contingencia ambiental, se eligieron 2 ecuaciones para Las Encinas y 2 para Padre Las Casas válidas para el día actual. Para el día siguiente de determinaron 6 ecuaciones para Las Encinas y 2 para Padre Las Casas. Los modelos elaborados para Las Encinas contemplan ecuaciones básicas, unas especiales para ser ejecutadas en horas de la tarde y otras ajustadas a los valores extremos.
- El acierto de los modelos de pronóstico de 24 horas para el día siguiente es superior a 93%. Porcentaje que mejora al considerar las ecuaciones de pronóstico válidas para el mismo día (elaborado a las 10 A.M.).Los modelos propuestos cumplen con las exigencias de los estándares del decreto DS59/1998 que establece un nivel mínimo de acierto total del 65%.
- Modelos para promedios móviles menores a 24 horas (1, 8 y 12 horas) presentan menores aciertos con una captura insatisfactoria de los valores extremos. Esta pérdida de sensibilidad para pronosticar períodos de escalas menores que 24 horas, podría asociarse a una mayor variabilidad de las concentraciones de MP10 en una escala temporal menor que la escala diaria, lo que tendería a suavizar los valores extremos. Sin embargo, se recomienda su utilización como indicadores adicionales en la gestión de episodios críticos.

Las recomendaciones específicas son las siguientes:

- La experiencia operacional en CENMA ha demostrado que la opinión experta es necesaria para interpretar los resultados que arrojan los modelos, especialmente en los días con concentraciones en el borde de las categorías definidas para decretar contingencias ambientales.
- Si bien las ecuaciones con sonda entregan un mejor ajuste general respecto a lo observado, se sugiere utilizar operacionalmente las 8 ecuaciones presentadas, para una mejor gestión del sistema de pronóstico en Temuco.
- A partir del análisis diario de las condiciones meteorológicas (durante la operación del pronóstico), se obtendrá una mejor estimación para la elaboración del PMCA. Se recomienda a futuro, estudiar las ecuaciones considerando este índice.
- La estación meteorológica instalada el cerro Oyama entregará una valiosa información meteorológica en altura, Este es un primer paso de gran importancia para el conocimiento y seguimiento en línea del gradiente vertical de temperatura.
- Se sugiere considerar la instalación de dos sensores adicionales de temperatura, uno ubicado en una torre sobre un edificio de la ciudad de Temuco, y el segundo a una altura intermedia entre Padre Las Casas y la estación ubicada sobre el cerro Oyama. Los datos de temperatura en la vertical entregados por estos cuatro puntos, permitirán conocer con mayor y mejor precisión el comportamiento el perfil térmico vertical y el comportamiento de la capa de mezcla Se recomienda a futuro, estudiar las ecuaciones considerando esta variable.
- La información que proporciona el Radiosondeo de Puerto Montt no es necesariamente representativo de las condiciones que se presentan en Temuco, de hecho está a una distancia mayor que la recomendada por la OMM para cumplir con el requisito de representatividad de las condiciones meteorológicas de Temuco. El meteorólogo experto deberá determinar caso a caso si para una condición determinada el sonda es o no representativo. Sería recomendable disponer de información de los perfiles verticales atmosféricos, ya sea mediante lanzamiento de globos sondas, sistemas automáticos (ecosonda), o sensores de temperatura a diferentes niveles como se propone en el punto anterior.

6 Referencias

Rutllant J., (1994)

On the generation of coastal lows in Central Chile.

Rutlant J. and Garreaud R. (1995)

Meteorological Air Pollution Potential for Santiago, Chile: Towards and Objective Episode Forecasting.

CENMA. Proyecto Meteorología y Calidad del Aire (2000).

Análisis de condiciones meteorológicas asociadas a episodios de contaminación atmosférica en Temuco Invierno-Primavera 2000

CENMA. Laboratorio de Modelación y Análisis Atmosférico (2001). Análisis de condiciones meteorológicas asociadas a episodios de contaminación atmosférica en Temuco Otoño-Invierno 2001

CENMA. Laboratorio de Modelación y Análisis Atmosférico (2002).

Análisis comparativo de condiciones meteorológicas asociadas a episodios de contaminación atmosférica en Santiago, durante los períodos Otoño Invierno 1997, 1998, 1999, 2000 y 2001.

CENMA. Laboratorio de Modelación y Análisis Atmosférico (2002)

Estudio de Apoyo para la Elaboración de un Plan de Gestión de Calidad de Aire para las Comunas de Temuco y Padre Las Casas. Generación de Información sobre condiciones de Calidad de Aire.

Informe Septiembre 2002 preparado para la CONAMA Región de la Araucanía.

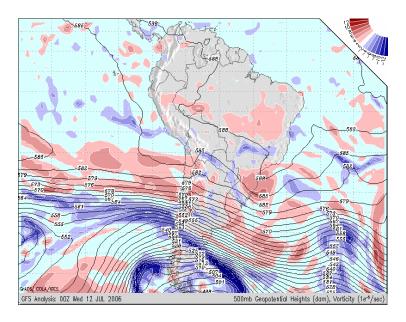
7 Anexos

7.1 Definición Categorías PMCA

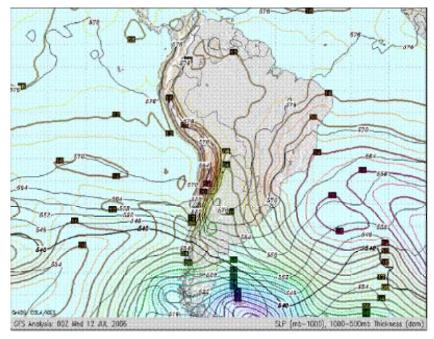
La definición del PMCA para Temuco integra las condiciones meteorológicas a escalas sinóptica, regional y local, asociadas a diferentes factores de ventilación y condiciones de dispersión

PMCA BAJO

Representa una situación muy favorable en términos de dispersión de contaminantes. Se asocia a presencia de sistemas frontales activos y de rápido desplazamiento, precipitación y/o vientos moderados a fuertes y ausencia de inversión térmica


En el radiosondeo de Puerto Montt la presión de superficie es del orden de 1000 hPa y no se observa inversión de subsidencia. En el nivel de presión 925 hPa a una altura aproximada de 700 mgp, la temperatura está en el rango 5 a 8°C y la velocidad del viento entre 10 y 15 m/s. Altura de 500 hPa del orden de 5450 mgp.

En la estación de Las Encinas, se observa poca oscilación térmica diurna, las temperaturas mínimas se presentan del orden de 6°C a 9°C, y máximas del orden de 10°C; la humedad relativa presenta valores cercanos a la saturación (100%); la velocidad del viento medio del día es del orden 3 a 4 m/s. La presión atmosférica media del día es del orden de 990 a 1000 hPa, alcanzando valores equivalentes a los presentados por el radiosondeo.


Las concentraciones de MP10 presentan generalmente valores promedio del día entre 20 y 30 $\mu g/m3$, con máximos horarios del orden de 50 a 100 $\mu g/m^3$. El máximo del promedio móvil de 24 horas muestra valores entre 25 y 50 $\mu g/m^3$.

<u>Ejemplo PMCA 1</u>: Situación sinóptica observada entre los días 11 y 12 de Julio de 2006 asociada a un sistema frontal activo.

Carta de 500 hPa día 11 de julio 2006 en la noche. Muestra una vaguada en altura bien definida sobre la zona (área azul) asociada a un sistema frontal activo en superficie.

Carta de presión superficial (espesor 500-1000) hPa día 11 de julio de 2006 en la noche. Muestra la posición del frente en superficie (centro de baja presión al sur de la zona).

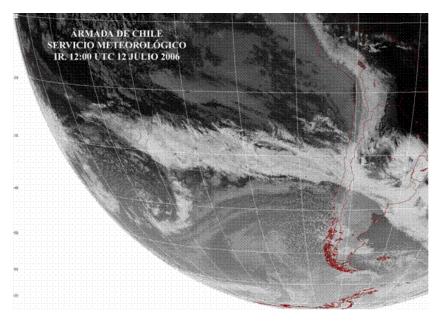
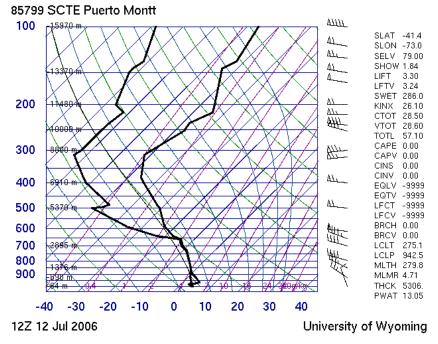
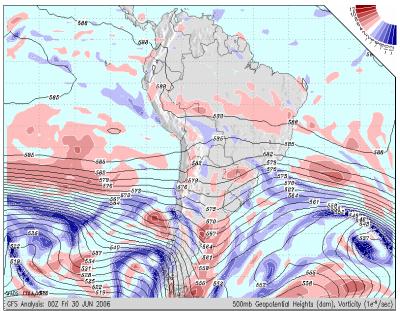



Imagen IR 12 de julio 2006 en la mañana. Se aprecia el paso de un sistema frontal activo por la zona.

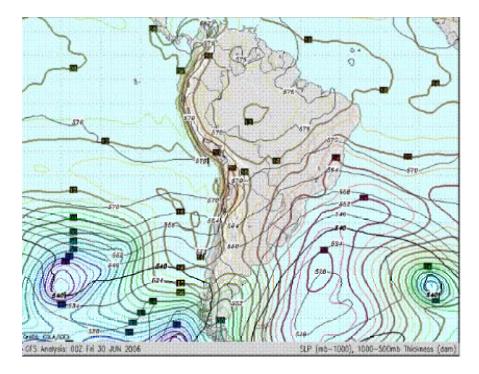
Perfil vertical temperatura, punto de rocío y viento Radiosondeo Puerto Montt 12 de julio 2006. Muestra saturación desde superficie hasta aproximadamente 750 hPa (temperatura del aire iguala a la Temperatura de punto de rocío).

PMCA REGULAR/BAJO


En general, se observan buenas condiciones de ventilación y dispersión de contaminantes. Se asocia a sistemas frontales de actividad regular a débil, con precipitación acumulada durante el evento menor a 10 mm.

El radiosonda de Puerto Montt presenta una inversión térmica de subsidencia débil o elevada, con presión en superficie entre 1000 y 1005 hPa. A 925 hPa se observan alturas entre 710 a 770 mgp, temperaturas en el rango 5 a 8°C, intensidad del viento del orden de 10 m/s. En nivel de 500 hPa se observan valores del orden de 5500 mgp.

En la estación de Las Encinas, al igual que en PMCA BAJO, se observa poca oscilación térmica diurna, con valores similares a los observados en la Categoría 1; presión media del día del orden 1000 a 1003 hPa; humedad relativa con valores entre 70 y 90%; velocidad del viento promedio del día de 1 a 3 m/s.


Las concentraciones máximas horarias de MP10 presentan valores entre 80 y 130 $\mu g/m^3$, promedio del día entre 30 y 50 $\mu g/m^3$. El máximo promedio móvil de 24 horas muestra valores entre 30 y 80 $\mu g/m^3$.

<u>Ejemplo PMCA 2</u>: Situación sinóptica observada entre 29 y 30 de Julio de 2006, asociada a un sistema frontal.

Carta 500 hPa día 29 julio de 2006 en la noche. Muestra la presencia de una vaguada débil en altura asociada a un sistema frontal en superficie .

Carta de presión superficial (espesor 500-1000) hPa día 29 julio 2006 en la noche. Muestra un sistema frontal cruzando el sur del país.

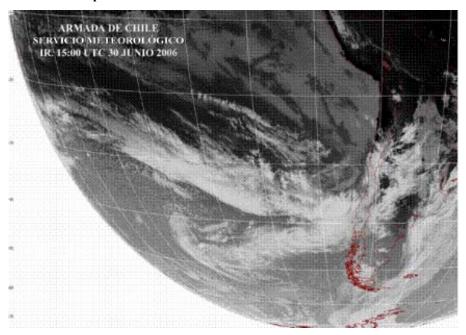
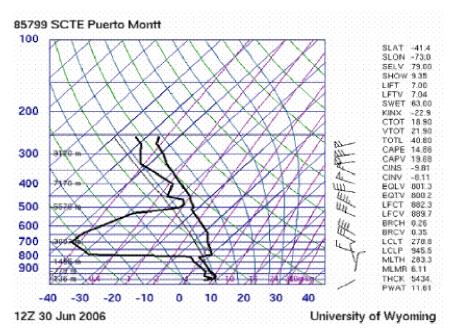
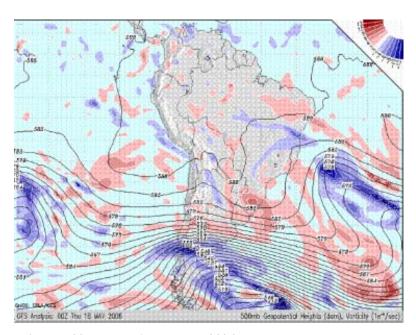



Imagen IR 30 de julio 2006 en la mañana. Se aprecia un sistema frontal al sur del país.

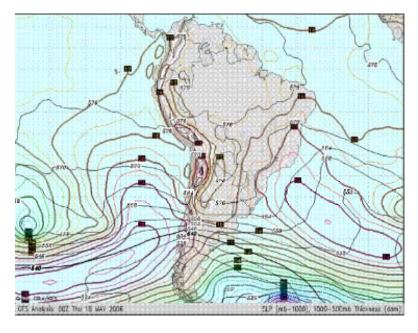
Perfil del radiosondeo en Puerto Montt 30 julio 2006. Muestra el ingreso del frente a niveles bajos (Bajo 800 hPa se observa saturación).

PMCA REGULAR

Esta categoría está caracterizada por la incursión de dorsales en altura débiles o moderadas, con altas presiones en superficie. Además de condiciones prefrontales de avance moderado a lento, que trae consigo nubosidad media.


En el radiosonda de Puerto Montt se aprecia una inversión de subsidencia de mediana intensidad, con presión en superficie en el rango 1003 a 1008 hPa. En el nivel de 925 hPa con altura de 800 metros, la temperatura fluctúa entre 3 y 6°C, velocidad del viento de 5 a 10 m/s. Alturas a 500 hPa del orden de 5600 mgp.

En Las Encinas la presión media del día del orden de 1003 a 1010 hPa, temperaturas máximas entre 12 y 14°C, y las mínimas entre 3 y 7°C. Velocidad del viento promedio del día entre 1 y 2 m/s.


Concentraciones de MP10 máximas horarias entre 200 a 300 $\mu g/m^3$, valores promedio día entre 60 y 100 $\mu g/m^3$. Máximo promedio móvil de 24 horas diario entre 80 y 120 $\mu g/m^3$.

Ejemplo PMCA 3: Situación sinóptica observada entre 17 y 18 de Mayo de 2006, asociada a una dorsal débil.

Carta de geopotencial de 500 hPa día 17 de mayo 2006 en la noche. Muestra el paso de una vaguada débil y la aproximación de dorsal débil en altura al continente.

Carta de presión superficial (espesor 500-1000) hPa 17 de mayo 2006 en la noche. Muestra la presencia de altas presiones frías (centro de alta presión al suroeste de la zona).

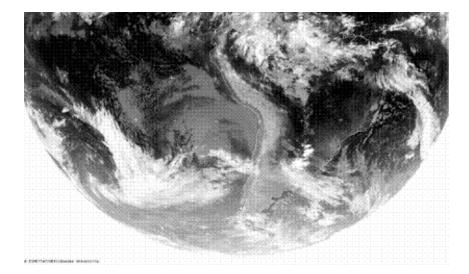
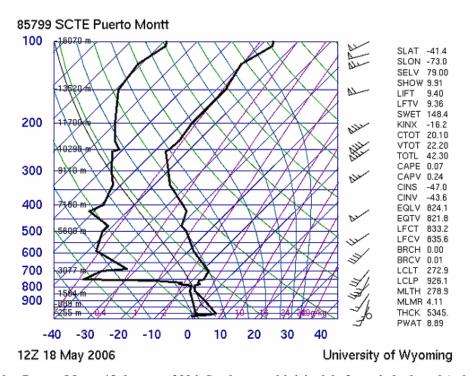



Imagen IR 18 de mayo 2006 en la mañana. Se aprecia una alta presión fría débil. Un frente sobre el océano aproxima al continente.

Radiosondeo Puerto Montt 18 de mayo 2006. Se observa el inicio del efecto de la dorsal (calentamiento y sequedad en altura sobre 800 hPa).

PMCA REGULAR/ALTO

Se asocia a condiciones de ventilación malas, relacionada con las siguientes configuraciones:

- Tipo A (t), correspondiente a una dorsal en altura bien definida e irrupción de alta fría en superficie, y una vaguada costera ubicada en la zona central.
- Tipo BPF (t), caracterizado por la aproximación de un sistema frontal cálido de lento desplazamiento, acompañado de abundante nubosidad media, registrándose un estancamiento de contaminantes y baja dispersión atmosférica en Temuco.
- Tipo mixto A (t)-BPF (t), mezcla los efectos de ambos tipos de configuraciones sinópticas. Típicamente comienza como un Tipo A (t) y le sigue la configuración BPF (t).
- Tipo A(t)-N(t), asociado a núcleos fríos, que corresponden a perturbaciones del aire polar desprendido hacia latitudes medias, acompañado por un estrangulamiento provocado por una dorsal ubicada al sur que se desplaza al continente. Cuando los núcleos fríos se posicionan al norte de Temuco, la circulación asociada contribuye a un flujo de viento proveniente desde el continente (aire seco de componente Este), subsidencia, reducción de la capa de mezcla superficial, generando malas condiciones de ventilación.

Los episodios menos frecuentes son los de tipo BPF (t), ya que en general a la latitud de Temuco, los sistemas frontales tienden a ser más dinámicos.

El radiosondeo de Puerto Montt muestra una inversión térmica de subsidencia de marcada intensidad, con alta presión en superficie en el rango 1010 a 1015 hPa. El nivel de 925 hPa con alturas entre 800 y 850 m, se observa una temperatura en el rango 3 y 6°C, velocidad del viento 5 m/s. Al nivel 500 hPa entre 5650 y 5700 mgp.

En Las Encinas la presión media del día del orden de 1010 hPa, velocidad del viento cercana a la calma. Temperatura máxima entre 12 y 16°C, temperatura mínima cercana a 0°C. Humedad relativa entre 40 y 50%. Estas variables representan una masa de aire cálida y seca, condición típica de la Categoría 4.

Las concentraciones de MP10 máximas horarias presentan valores entre 300 y 500 $\mu g/m^3$, promedio diario (de 0 a 23 horas) entre 120 y 200 $\mu g/m^3$. Máximo promedio móvil de 24 horas entre 150 y 200 $\mu g/m^3$.

<u>Ejemplo (1) PMCA 4:</u> Situación sinóptica observada desde el 12 al 14 de Junio de 2002 asociada al paso de una alta fría en superficie hacia sector argentino, y la irrupción de una dorsal cálida en la troposfera media, determinando una configuración A(t)

7.2 Configuración A (t)

7.2.1 Episodio 12-14 Junio 2002

Tabla 1

Episodio N°	: 01	
Tipo	: A(t)	
Fecha	: 12-14 de Junio de 2002	
Duración	: 29 horas sobre los 195 (ug/m3) 18 horas sobre los 150 (ug/m3)	
Máximo promedio de 24 horas	: 223 (ug/m3), a las 01:00 horas del día 14	
Máxima concentración horaria del evento	: 743 (ug/m3), a las 00:00 horas del día 14	
Condición Meteorológica Observada	- Dorsal en altura de gran intensidad Predominio de altas presiones frías	

7.2.2 Situación meteorológica previa al evento

Meteorología

El día 12 aproximaba a la Zona Sur una dorsal en altura de gran extensión, la que traía consigo un considerable aumento de la temperatura en niveles medios de la atmósfera y movimientos de descenso del aire que contribuyen a reducir la capa de mezcla superficial. En superficie, se observaba la irrupción de un área de altas presiones de origen frío a la IX Región.

• Análisis de los Modelos Numéricos de Pronóstico

Los Modelos Numéricos mostraron gran concordancia entre sí para anticipar las malas condiciones de ventilación que se desarrollarían posteriormente. Tanto en altura como en superficie, los sistemas sinópticos fueron certeramente pronosticados por los distintos Modelos.

7.2.2.1 Mapa de 500 hPa

Se observa en la Figura la irrupción de una dorsal bien definida en la troposfera media a la Zona Sur, asociada al aporte de aire cálido en los niveles medios, movimientos de descenso del aire y estabilización a niveles bajos (20 HL del 13 de Junio 2002)

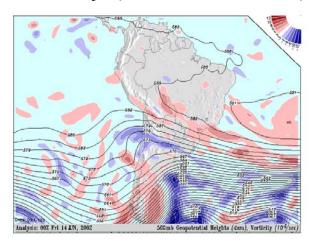


Figura 4 Mapa de 500 hPa válido para las 20 HL del día 13 de Junio 2002 (Modelo Global MRF)

7.2.2.2 Mapa de superficie y espesor 1000-500 hPa.

Se observa la presencia de una alta fría sobre la Zona Sur, y la proyección de una baja costera en la Zona Central. Asociado al anticiclón frío se registraron en Temuco temperaturas mínimas entre -2 y -3°C.

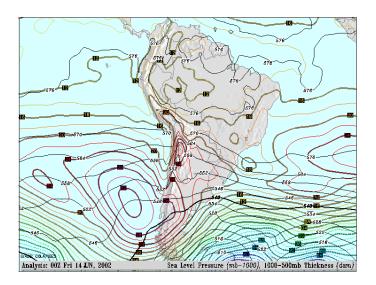


Figura 5 Mapa de Superficie y Espesor 1000-500 hPa válido para las 20 HL del día 13 de Junio (Modelo Global MRF)

7.2.2.3 Imagen Satelital

Se observa escasa nubosidad entre la I y X Regiones, y nubosidad baja sobre el Pacífico frente a la Zona Norte.

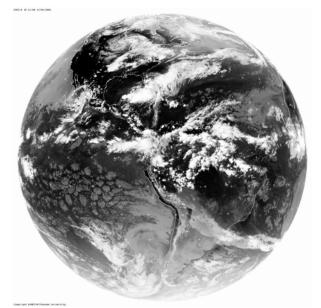
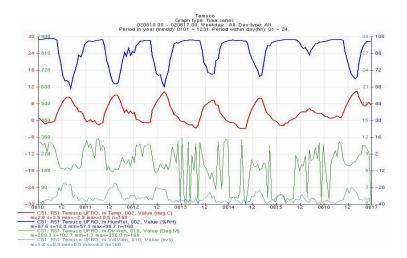



Figura 6 Imagen satelital correspondiente a las 17:00 HL del día 13 de Junio

7.2.2.4 Mediciones meteorológicas en superficie

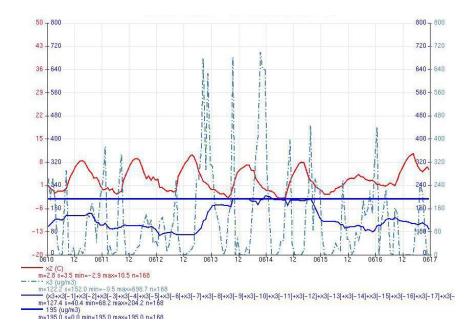
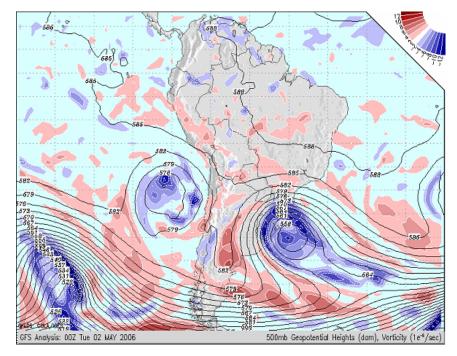

La situación meteorológica en superficie, se refleja en los datos obtenidos desde la estación de Temuco. La Figura 17 muestra el descenso que presentó la temperatura, reflejado en las mínimas de los días 13 y 14 (-2.6 y -2.9°C respectivamente), registrándose además vientos muy débiles de componente Norte y Noreste.

Figura 7. Comportamiento de la temperatura (rojo), humedad relativa (azul), dirección (verde) e intensidad del viento (celeste). Datos obtenidos de la estación Las Encinas, Temuco.

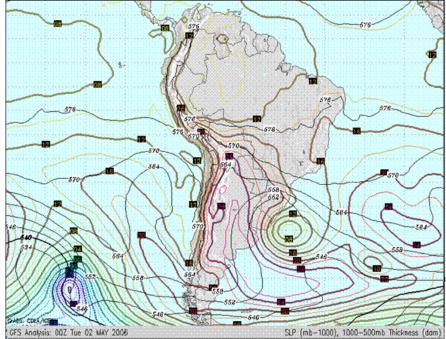
7.2.2.5 Mediciones de Calidad de Aire MP10

Figura 8. Comportamiento de la temperatura (rojo) y de MP-10 para valores horarios (celeste) y promedios móviles de 24 horas (azul). Datos obtenidos de la estación Las Encinas, Temuco.

En la Figura de observa que se presentaron altos valores horarios de concentraciones de MP-10, particularmente en la noche del 12 y el 13. Esto último se tradujo en que a las 01 horas se produjera el promedio móvil más alto, con 223 ug/m3.


7.2.2.6 Conclusiones

• Este Episodio representa un caso típico de empeoramiento de la calidad de aire tipo A (t), en el cual interaccionan un calentamiento en altura asociado a la dorsal y que se propaga hacia niveles bajos, y las bajas temperaturas en superficie, debido a las altas presiones frías.


Ejemplo (2) PMCA 4: Situación sinóptica observada los días 01 y 02 de Mayo de 2006, asociada a dorsal en altura y vaguada costera en superficie en la zona central. Núcleo frío al norte de Temuco. (Tipo A(t)-N(t))

Carta geopotencial 500hPa día 01 de mayo 2006 en la noche. Muestra la presencia de una dorsal bien definida al sur del país (prolongación de área naranja) y un núcleo frío al noroeste de la zona.

Carta de presión superficial (espesor 500-1000) hPa día 01 mayo 2006 en la noche. Muestra una vaguada costera debilitada por el traslado de altas presiones frías a sectores argentinos.

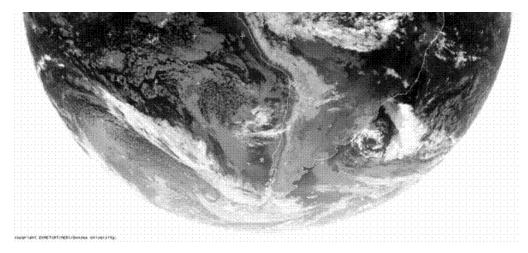
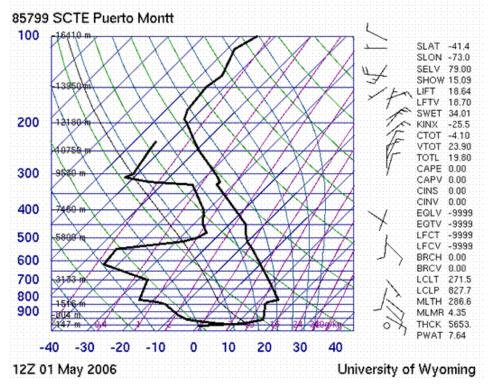



Imagen IR 02 de mayo 2006 en la mañana. Se aprecia una alta presión fría sobre Temuco, y un núcleo frío desplazándose hacia la zona central.

Radiosondeo Puerto Montt 01 de mayo 2006. Muestra una marcada subsidencia atmosférica (inversión térmica bien definida) por condición Tipo A, reforzada por la acción de un núcleo frío en altura al norte de la zona.

PMCA ALTO

Las configuraciones sinópticas asociadas a esta categoría son las mismas que en el PMCA 4, pero corresponden a condiciones más intensas, mejor definidas y con mayor persistencia temporal. Normalmente la configuración está asociada a un bajo índice de circulación zonal, lo que determina una mayor profundización de la configuración, y lento desplazamiento de la misma, pudiendo traer como consecuencia una mayor duración de las malas condiciones de dispersión sobre la Zona Sur.

Las variables meteorológicas y del radiosondeo, muestran un comportamiento similar a lo detallado en la Categoría 4.

Las concentraciones de MP10 máximas horarias presentan valores entorno a los 500 μg/m³. Valores promedio MP10 del día del orden de 200 μg/m³. Máximo promedio móvil de 24 horas con valores sobre 200 μg/m³.

7.3 Descripción Base de Datos

7.3.1 Nomenclatura usada en los nombres de las variables

Nomenclatura usada para las variables medidas en superficie (calidad de aire, meteorología):

XXtttss XX código de tipo de variable

ttt período de tiempo ss código de estación

Nomenclatura usada para las variables de altura (radiosonda):

XXzzttt XX código de variable de altura

zz código de nivel de altura

ttt período de tiempo

Tabla 7.3-1 Nomenclatura usada en la construcción de nombres de variables

CODIGO	Descripción
Estación	CENMA
LE	Las Encinas
PL	Padre Las Casas
Estación	DMC
TE	Puerto Montt
Variables	Calidad de aire
MP	Concentraciones de Material Particulado Respirable (MP10) ug/m ³
Variables	Meteorológicas
IM	Potencial meteorológico de contaminación atmosférica
TA	Temperatura del aire (°C)
HR	Humedad relativa (%)
PA	Presión atmosférica (hPa)
WD	Dirección del viento (grados)
WS	Rapidez del viento (m/s)
Н, о НН	Altura geopotencial (m)
DP	Depresión del punto de rocío (°C)
CDIR	Coseno de la dirección de viento (Componente N-S)
SDIR	Seno de la dirección del viento (Componente E-W)
ESP500	Espesor entre 1000 y 500 hPa
D	Primera letra antes del nombre de la variable, indica diferencia con respecto al día
	anterior

CODIGO	Descripción
Período	
06L	06 h local
08L	08 h local (equivale a 12 UTC)
12L	12 h local
18L	18 h local
00L	24 h local
DA	Día anterior al actual
D0	Día actual
D1	Día siguiente al actual
Niveles	Altura
00	Nivel de 1000 hPa
92	Nivel de 925 hPa
85	Nivel de 850 hPa
50	Nivel de 500 hPa
BI	Base de la Capa de inversión térmica de subsidencia
TI	Tope de la Capa de inversión térmica de subsidencia
Índices	Estacionalidad
DECLIN	Declinación solar (grados)

7.3.2 Variables incluidas en la Base de Datos de Trabajo

En la Tabla 7.3-2 se presentan las variables incluidas en la base de datos de trabajo.

Las variables a predecir son los valores de MP10 de hoy y mañana.

Tabla 7.3-2 Variables incluidas en la base de datos de trabajo

NOMBRE	DESCRIPCION
MP24LEDA	Valor Máximo Móvil de 24 horas MP-10 de ayer en la estación de Las Encinas
MP24LED0	Valor Máximo Móvil de 24 horas MP-10 de hoy en la estación de Las Encinas
MP24LED1	Valor Máximo Móvil de 24 horas MP-10 de mañana en la estación de Las Encinas
MP24LE00L	Valor Móvil de 24 horas MP-10 a las 23 horas local en la estación de Las Encinas
MPLE2406L	Valor Móvil de 24 horas MP-10 a las 05 horas local en la estación de Las Encinas
MPLE2418D0	Valor Móvil de 24 horas MP-10 a las 17 horas local en la estación de Las Encinas
MPLE2418DA	Valor Móvil de 24 horas MP-10 a las 17 horas de ayer en la estación de Las Encinas
MPLE2418D1	Valor Móvil de 24 horas MP-10 a las 17 horas de mañana en la estación de Las
	Encinas
MPLE1212D0	Valor Móvil de 12 horas MP-10 a las 11 horas local de hoy en la estación de Las
	Encinas
MPLE1212DA	Valor Móvil de 12 horas MP-10 a las 11 horas local de ayer en la estación de Las
	Encinas

NOMBRE	DESCRIPCION
MPLE1212D1	Valor Móvil de 12 horas MP-10 a las 11 horas local de mañana en la estación de Las Encinas
MPLE1200D0	Valor Móvil de 12 horas MP-10 a las 23 horas local de hoy en la estación de Las Encinas
MPLE1200DA	Valor Móvil de 12 horas MP-10 a las 23 horas local de ayer en la estación de Las Encinas
MPLE1200D1	Valor Móvil de 12 horas MP-10 a las 23 horas local de mañana en la estación de Las Encinas
MPLE0606D0	Valor Móvil de 06 horas MP-10 a las 05 horas local de hoy en la estación de Las Encinas
MPLE0606DA	Valor Móvil de 06 horas MP-10 a las 05 horas local de ayer en la estación de Las Encinas
MPLE0606D1	Valor Móvil de 06 horas MP-10 a las 05 horas local de mañana en la estación de Las Encinas
MPLE0612D0	Valor Móvil de 06 horas MP-10 a las 11 horas local de hoy en la estación de Las Encinas
MPLE0612DA	Valor Móvil de 06 horas MP-10 a las 11 horas local de ayer en la estación de Las Encinas
MPLE0612D1	Valor Móvil de 06 horas MP-10 a las 11 horas local de mañana en la estación de Las Encinas
MPLE0618D0	Valor Móvil de 06 horas MP-10 a las 17 horas local de hoy en la estación de Las Encinas
MPLE0618DA	Valor Móvil de 06 horas MP-10 a las 17 horas local de ayer en la estación de Las Encinas
MPLE0618D1	Valor Móvil de 06 horas MP-10 a las 17 horas local de mañana en la estación de Las Encinas
MPLE0600D0	Valor Móvil de 06 horas MP-10 a las 23 horas local de hoy en la estación de Las Encinas
MPLE0600DA	Valor Móvil de 06 horas MP-10 a las 23 horas local de ayer en la estación de Las Encinas
MPLE0600D1	Valor Móvil de 06 horas MP-10 a las 23 horas local de mañana en la estación de Las Encinas
MPLE0806D0	Valor Móvil de 08 horas MP-10 a las 05 horas local de hoy en la estación de Las Encinas
MPLE0806DA	Valor Móvil de 08 horas MP-10 a las 05 horas local de ayer en la estación de Las Encinas
MPLE0806D1	Valor Móvil de 08 horas MP-10 a las 05 horas local de mañana en la estación de Las Encinas
MPLE0812D0	Valor Móvil de 08 horas MP-10 a las 11 horas local de hoy en la estación de Las Encinas
MPLE0812DA	Valor Móvil de 08 horas MP-10 a las 11 horas local de ayer en la estación de Las Encinas
MPLE0812D1	Valor Móvil de 08 horas MP-10 a las 11 horas local de mañana en la estación de Las Encinas
MPLE0818D0	Valor Móvil de 08 horas MP-10 a las 17 horas local de hoy en la estación de Las Encinas
MPLE0818DA	Valor Móvil de 08 horas MP-10 a las 17 horas local de ayer en la estación de Las Encinas

NOMBRE	DESCRIPCION
MPLE0818D1	Valor Móvil de 08 horas MP-10 a las 17 horas local de mañana en la estación de Las Encinas
MPLE0800D0	Valor Móvil de 08 horas MP-10 a las 23 horas local de hoy en la estación de Las Encinas
MPLE0800DA	Valor Móvil de 08 horas MP-10 a las 23 horas local de ayer en la estación de Las Encinas
MPLE0800D1	Valor Móvil de 08 horas MP-10 a las 23 horas local de mañana en la estación de Las Encinas
MP24LE12L	Valor Móvil de 24 horas MP-10 a las 11 horas local en la estación de Las Encinas
MPLE1206L	Valor Móvil de 12 horas MP-10 a las 05 horas local de hoy en la estación de Las Encinas
MPLE1218L	Valor Móvil de 12 horas MP-10 a las 17 horas local de hoy en la estación de Las Encinas
MPLE1218LDA	Valor Móvil de 12 horas MP-10 a las 17 horas local de ayer en la estación de Las Encinas
MPLE1206D1	Valor Móvil de 12 horas MP-10 a las 05 horas de mañana en la estación de Las Encinas
MPLE1218D1	Valor Móvil de 12 horas MP-10 a las 17 horas de mañana en la estación de Las Encinas
MP1HMAXLE	Valor Máximo de 1 hora en el día de MP-10 en la estación de Las Encinas
MP1HMAXLED1	Valor Máximo de 1 hora en el día de MP-10 en la estación de Las Encinas día Siguiente.
MP1HMAXLEDA	Valor Máximo de 1 hora en el día de MP-10 en la estación de Las Encinas día anterior.
MPLE0602L	Valor Móvil de 06 horas MP-10 a la 01 hora de hoy en la estación de Las Encinas
MPLE0602DA	Valor Móvil de 06 horas MP-10 a las 01 hora día anterior en la estación de Las Encinas.
MPLE0602D1	Valor Móvil de 06 horas MP-10 a las 01 hora día de mañana en la estación de Las Encinas.
MPMAX06HLED0	Valor Máximo Móvil de 06 horas MP-10 en la estación de Las Encinas
MPMAX06HLED1	Valor Máximo Móvil de 06 horas MP-10 en la estación de Las Encinas día siguiente
MPMAX06HLEDA	Valor Máximo Móvil de 06 horas MP-10 en la estación de Las Encinas día anterior
MPMAX08HLED0	Valor Máximo Móvil de 08 horas MP-10 en la estación de Las Encinas
MPMAX08HLEDA	Valor Máximo Móvil de 08 horas MP-10 en la estación de Las Encinas día anterior
MPMAX08HLED1	Valor Máximo Móvil de 08 horas MP-10 en la estación de Las Encinas día siguiente
MPMAX12HLED0	Valor Máximo Móvil de 12 horas MP-10 en la estación de Las Encinas
MPMAX12HLED1	Valor Máximo Móvil de 12 horas MP-10 en la estación de Las Encinas día siguiente
MPMAX12HLEDA	Valor Máximo Móvil de 12 horas MP-10 en la estación de Las Encinas día anterior
MPPL24DA	Valor Máximo Móvil de 24 horas MP-10 de ayer en la estación de Padre Las Casas
MPPL24D0	Valor Máximo Móvil de 24 horas MP-10 de hoy en la estación de Padre Las Casas
MPPL24D1	Valor Máximo Móvil de mañana 24 horas MP-10 de mañana en la estación de Padre Las Casas
MPPL2400L	Valor Móvil de 24 horas MP-10 a las 24 horas local en la estación de Padre Las Casas día de hoy
MPPL2406L	Valor Móvil de 24 horas MP-10 a las 05 horas local en la estación de Padre Las Casas
MPPL2412L	Valor Móvil de 24 horas MP-10 a las 11 horas local en la estación de Padre Las Casas

NOMBRE	DESCRIPCION
MPPL1206L	Valor Móvil de 12 horas MP-10 a las 05 horas local de hoy en la estación de Padre Las Casas
MPPL1218L	Valor Móvil de 12 horas MP-10 a las 17 horas local de hoy en la estación Padre Las Casas
MPPL12DA18L	Valor Móvil de 12 horas MP-10 a las 17 horas local de ayer en la estación de Padre Las Casas
MPPL1206D1	Valor Móvil de 12 horas MP-10 a las 05 horas de mañana en la estación de Padre Las Casas día de mañana.
MPPL1218D1	Valor Móvil de 12 horas MP-10 a las 17 horas de mañana en la estación de Padre Las Casas siguiente.
MPPL1212D0	Valor Móvil de 12 horas MP-10 a las 11 horas de hoy en la estación de Padre Las Casas.
MPPL1212DA	Valor Móvil de 12 horas MP-10 a las 11 horas de ayer en la estación de Padre Las Casas.
MPPL1212D1	Valor Móvil de 12 horas MP-10 a las 11 horas del día de mañana en la estación de Padre Las Casas.
MPPL1200D0	Valor Móvil de 12 horas MP-10 a las 23 horas de hoy en la estación de Padre Las Casas.
MPPL1200DA	Valor Móvil de 12 horas MP-10 a las 23 horas de ayer en la estación de Padre Las Casas.
MPPL1200D1	Valor Móvil de 12 horas MP-10 a las 23 horas del día de mañana en la estación de Padre Las Casas.
MPPL0606D0	Valor Móvil de 06 horas MP-10 a las 05 horas de hoy en la estación de Padre Las Casas.
MPPL0606DA	Valor Móvil de 06 horas MP-10 a las 05 horas de ayer en la estación de Padre Las Casas.
MPPL0606D1	Valor Móvil de 06 horas MP-10 a las 05 horas del día de mañana en la estación de Padre Las Casas.
MPPL0612D0	Valor Móvil de 06 horas MP-10 a las 11 horas de hoy en la estación de Padre Las Casas.
MPPL0612DA	Valor Móvil de 06 horas MP-10 a las 11 horas de ayer en la estación de Padre Las Casas.
MPPL0612D1	Valor Móvil de 06 horas MP-10 a las 11 horas del día de mañana en la estación de Padre Las Casas.
MPPL0618D0	Valor Móvil de 06 horas MP-10 a las 17 horas de hoy en la estación de Padre Las Casas.
MPPL0618DA	Valor Móvil de 06 horas MP-10 a las 17 horas de ayer en la estación de Padre Las Casas.
MPPL0618D1	Valor Móvil de 06 horas MP-10 a las 17 horas de mañana en la estación de Padre Las Casas.
MPPL0600D0	Valor Móvil de 06 horas MP-10 a las 23 horas de hoy en la estación de Padre Las Casas.
MPPL0600DA	Valor Móvil de 06 horas MP-10 a las 23 horas de ayer en la estación de Padre Las Casas.
MPPL0600D1	Valor Móvil de 06 horas MP-10 a las 23 horas del día de mañana en la estación de Padre Las Casas.
MPPL0806D0	Valor Móvil de 08 horas MP-10 a las 05 horas de hoy en la estación de Padre Las Casas.

NOMBRE	DESCRIPCION
MPPL0806DA	Valor Móvil de 08 horas MP-10 a las 05 horas de ayer en la estación de Padre Las Casas.
MPPL0806D1	Valor Móvil de 08 horas MP-10 a las 05 horas de mañana en la estación de Padre Las Casas.
MPPL0812D0	Valor Móvil de 08 horas MP-10 a las 11 horas de hoy en la estación de Padre Las Casas.
MPPL0812DA	Valor Móvil de 08 horas MP-10 a las 11 horas de ayer en la estación de Padre Las Casas.
MPPL0812D1	Valor Móvil de 08 horas MP-10 a las 11 horas de mañana en la estación de Padre Las Casas.
MPPL0818D0	Valor Móvil de 08 horas MP-10 a las 17 horas de hoy en la estación de Padre Las Casas.
MPPL0818DA	Valor Móvil de 08 horas MP-10 a las 17 horas de ayer en la estación de Padre Las Casas.
MPPL0818D1	Valor Móvil de 08 horas MP-10 a las 17 horas de ayer en la estación de Padre Las Casas.
MPPL0800D0	Valor Móvil de 08 horas MP-10 a las 23 horas de hoy en la estación de Padre Las Casas.
MPPL0800DA	Valor Móvil de 08 horas MP-10 a las 23 horas de ayer en la estación de Padre Las Casas.
MPPL0800D1	Valor Móvil de 08 horas MP-10 a las 23 horas de mañana en la estación de Padre Las Casas.
MPMAX08HPLD0	Valor Máximo Móvil de 08 horas MP-10 día de hoy en la estación de Padre Las Casas
MPMAX08HPLDA	Valor Máximo Móvil de 08 horas MP-10 día de ayer en la estación de Padre Las Casas
MPMAX08HPLD1	Valor Máximo Móvil de 08 horas MP-10 día de mañana en la estación de Padre Las Casas
MP1HMAXPL	Valor Máximo de 1 hora en el día de MP-10 en la estación de Padre Las Casas
MP1HMAXPLD1	Valor Máximo de 1 hora en el día de MP-10 en la estación de Padre Las Casas día Siguiente.
MP1HMAXPLDA	Valor Máximo de 1 hora en el día de MP-10 en la estación de Padre Las Casas día anterior.
MPPL0602D0	Valor Móvil de 06 horas MP-10 a las 01 hora de hoy en la estación de Padre Las Casas
MPPL0602DA	Valor Móvil de 06 horas MP-10 a las 01 horas de ayer en la estación de Padre Las Casas.
MPPL0602D1	Valor Móvil de 06 horas MP-10 a las 01 hora de mañana en la estación de Padre Las Casas
MPMAXPL06D0	Valor Máximo Móvil de 06 horas MP-10 en la estación de Padre Las Casas
MPMAXPL06D1	Valor Máximo Móvil de 06 horas MP-10 en la estación de Padre Las Casas día siguiente
MPMAXPL06DA	Valor Máximo Móvil de 06 horas MP-10 en la estación de Padre Las Casas día anterior.
MPMAX12HPLD0	Valor Máximo Móvil de 12 horas MP-10 en la estación de Padre Las Casas
MPMAX12HPLD1	Valor Máximo Móvil de 12 horas MP-10 en la estación de Padre Las Casas día siguiente
MPMAX12HPLDA	Valor Máximo Móvil de 12 horas MP-10 en la estación de Padre Las Casas día

NOMBRE	DESCRIPCION
	anterior.
PASUP08L	Presión del nivel de superficie hoy a las 08:00 H local Sonda Puerto Montt
H0008L	Altura del nivel de 1000 hPa hoy a las 08:00 H local Sonda Puerto Montt
H9208L	Altura del nivel de 925 hPa hoy a las 08:00 H local Sonda Puerto Montt
H8508L	Altura del nivel de 850 hPa hoy a las 08:00 H local Sonda Puerto Montt
H7008L	Altura del nivel de 700 hPa hoy a las 08:00 H local Sonda Puerto Montt
H5008L	Altura del nivel de 500 hPa hoy a las 08:00 H local Sonda Puerto Montt
TA9208L	Temperatura del nivel de 925 hPa hoy a las 08:00 H local Sonda Puerto Montt
TA8508L	Temperatura del nivel de 850 hPa hoy a las 08:00 H local Sonda Puerto Montt
TA7008L	Temperatura del nivel de 700 hPa hoy a las 08:00 H local Sonda Puerto Montt
TA5008L	Temperatura del nivel de 500 hPa hoy a las 08:00 H local Sonda Puerto Montt
DP9208L	Depresión del Punto de Rocío del nivel de 925 hPa hoy a las 08:00 H local Sonda Puerto Montt
DP8508L	Depresión del Punto de Rocío del nivel de 850 hPa hoy a las 08:00 H local Sonda Puerto Montt
DP7008L	Depresión del Punto de Rocío del nivel de 700 hPa hoy a las 08:00 H local Sonda Puerto Montt
DP5008L	Depresión del Punto de Rocío del nivel de 500 hPa hoy a las 08:00 H local Sonda Puerto Montt
TPR925	Temperatura del Punto de Rocío del nivel de 925 hPa hoy a las 08:00 H local Sonda Puerto Montt
TPR850	Temperatura del Punto de Rocío del nivel de 850 hPa hoy a las 08:00 H local Sonda Puerto Montt
TPR700	Temperatura del Punto de Rocío del nivel de 700 hPa hoy a las 08:00 H local Sonda Puerto Montt
TPR500	Temperatura del Punto de Rocío del nivel de 500 hPa hoy a las 08:00 H local Sonda Puerto Montt
WD9208L	Dirección del Viento del nivel de 925 hPa hoy a las 08:00 H local Sonda Puerto Montt
WD8508L	Dirección del Viento del nivel de 850 hPa hoy a las 08:00 H local Sonda Puerto Montt
WD7008L	Dirección del Viento del nivel de 700 hPa hoy a las 08:00 H local Sonda Puerto Montt
WD5008L	Dirección del Viento del nivel de 500 hPa hoy a las 08:00 H local Sonda Puerto Montt
WS9208L	Rapidez del Viento del nivel de 925 hPa hoy a las 08:00 H local Sonda Puerto Montt
WS8508L	Rapidez del Viento del nivel de 850 hPa hoy a las 08:00 H local Sonda Puerto Montt
WS7008L	Rapidez del Viento del nivel de 700 hPa hoy a las 08:00 H local Sonda Puerto Montt
WS5008L	Rapidez del Viento del nivel de 500 hPa hoy a las 08:00 H local Sonda Puerto Montt
SHOWALTER	Índice de estabilidad atmosférica showalter hoy a las 08:00 H local Sonda Puerto Montt
K	Índice de estabilidad atmosférica K hoy a las 08:00 H local Sonda Puerto Montt
Total Totals	Índice de estabilidad atmosférica Total Totals hoy a las 08:00 H local Sonda Puerto Montt
HdeT0	Altura de la isoterma cero hoy a las 08:00 H local Sonda Puerto Montt
PdeT0	Presión de la isoterma cero hoy a las 08:00 H local Sonda Puerto Montt
P base inv	Presión de la base de la inversión térmica hoy a las 08:00 H local Sonda Puerto Montt
Alt base inv	Altura de la base de la inversión térmica hoy a las 08:00 H local Sonda Puerto Montt

NOMBRE	DESCRIPCION
T base inv	Temperatura de la base de la inversión térmica hoy a las 08:00 H local Sonda Puerto Montt
P tope inv	Presión del tope de la inversión térmica hoy a las 08:00 H local Sonda Puerto Montt
Alt tope inv	Altura del tope de la inversión térmica hoy a las 08:00 H local Sonda Puerto Montt
T tope inv	Temperatura del base de la inversión térmica hoy a las 08:00 H local Sonda Puerto Montt
ESP5008L	Espesor 1000-500 hPa hoy a las 08:00 H Local Sonda Puerto Montt
CDIR928L	Coseno de la Dirección del Viento del nivel de 925 hPa hoy a las 08:00 H local Sonda Puerto Montt
SDIR928L	Seno de la Dirección del Viento del nivel de 925 hPa hoy a las 08:00 H local Sonda Puerto Montt
CDIR858L	Coseno de la Dirección del Viento del nivel de 850 hPa hoy a las 08:00 H local Sonda Puerto Montt
SDIR858L	Seno de la Dirección del Viento del nivel de 850 hPa hoy a las 08:00 H local Sonda Puerto Montt
CDIR7008L	Coseno de la Dirección del Viento del nivel de 700 hPa hoy a las 08:00 H local Sonda Puerto Montt
SDIR7008L	Seno de la Dirección del Viento del nivel de 700 hPa hoy a las 08:00 H local Sonda Puerto Montt
CDIR508L	Coseno de la Dirección del Viento del nivel de 500 hPa hoy a las 08:00 H local Sonda Puerto Montt
SDIR508L	Seno de la Dirección del Viento del nivel de 500 hPa hoy a las 08:00 H local Sonda Puerto Montt
DPS08L	Diferencia entre ayer y hoy de la Presión en superficie a las 08:00 H local en Sonda Puerto Montt
DH0008L	Diferencia entre ayer y hoy de la Altura del nivel de 1000 hPa a las 08:00 H local Sonda Puerto Montt
DH9208L	Diferencia entre ayer y hoy de la Altura del nivel de 925 hPa a las 08:00 H local Sonda Puerto Montt
DH8508L	Diferencia entre ayer y hoy de la Altura del nivel de 850 hPa a las 08:00 H local Sonda Puerto Montt
DH7008L	Diferencia entre ayer y hoy de la Altura del nivel de 700 hPa a las 08:00 H local Sonda Puerto Montt
DH5008L	Diferencia entre ayer y hoy de la Altura del nivel de 500 hPa a las 08:00 H local Sonda Puerto Montt
DTA9208L	Diferencia entre ayer y hoy de la Temperatura del nivel de 925 hPa a las 08:00 H local Sonda Puerto Montt
DTA8508L	Diferencia entre ayer y hoy de la Temperatura del nivel de 850 hPa a las 08:00 H local Sonda Puerto Montt
DTA7008L	Diferencia entre ayer y hoy de la Temperatura del nivel de 700 hPa a las 08:00 H local Sonda Puerto Montt
DTA5008L	Diferencia entre ayer y hoy de la Temperatura del nivel de 500 hPa a las 08:00 H local Sonda Puerto Montt
DDP9208L	Diferencia entre ayer y hoy de la Depresión del Punto de Rocío del nivel de 925 hPa a las 08:00 H local Sonda Puerto Montt
DDP8508L	Diferencia entre ayer y hoy de la Depresión del Punto de Rocío del nivel de 850 hPa a las 08:00 H local Sonda Puerto Montt

NOMBRE	DESCRIPCION
DDP7008L	Diferencia entre ayer y hoy de la Depresión del Punto de Rocío del nivel de 700 hPa a las 08:00 H local Sonda Puerto Montt
DDP5008L	Diferencia entre ayer y hoy de la Depresión del Punto de Rocío del nivel de 500 hPa a las 08:00 H local Sonda Puerto Montt
DWD9208L	Diferencia entre ayer y hoy de la Dirección del Viento del nivel de 925 hPa a las 08:00 H local Sonda Puerto Montt
DWD8508L	Diferencia entre ayer y hoy de la Dirección del Viento del nivel de 850 hPa a las 08:00 H local Sonda Puerto Montt
DWD7008L	Diferencia entre ayer y hoy de la Dirección del Viento del nivel de 700 hPa a las 08:00 H local Sonda Puerto Montt
DWD5008L	Diferencia entre ayer y hoy de la Dirección del Viento del nivel de 500 hPa a las 08:00 H local Sonda Puerto Montt
DWS9208L	Diferencia entre ayer y hoy de la Rapidez del Viento del nivel de 925 hPa a las 08:00 H local Sonda Puerto Montt
DWS8508L	Diferencia entre ayer y hoy de la Rapidez del Viento del nivel de 850 hPa a las 08:00 H local Sonda Puerto Montt
DWS7008L	Diferencia entre ayer y hoy de la Rapidez del Viento del nivel de 700 hPa a las 08:00 H local Sonda Puerto Montt
DWS5008L	Diferencia entre ayer y hoy de la Rapidez del Viento del nivel de 500 hPa a las 08:00 H local Sonda Puerto Montt
DESP08L	Diferencia entre ayer y hoy del Espesor 1000-500 hPa hoy a las 08:00 H Local Sonda Puerto Montt
DCDIR92	Diferencia entre ayer y hoy del Coseno de la Dirección del Viento del nivel de 925 hPa a las 08:00 H local Sonda Puerto Montt
DSDIR92	Diferencia entre ayer y hoy del Seno de la Dirección del Viento del nivel de 925 hPa a las 08:00 H local Sonda Puerto Montt
DCDIR85	Diferencia entre ayer y hoy del Coseno de la Dirección del Viento del nivel de 850 hPa a las 08:00 H local Sonda Puerto Montt
DSDIR85	Diferencia entre ayer y hoy del Seno de la Dirección del Viento del nivel de 850 hPa a las 08:00 H local Sonda Puerto Montt
DCDIR70	Diferencia entre ayer y hoy del Coseno de la Dirección del Viento del nivel de 700 hPa a las 08:00 H local Sonda Puerto Montt
DSDIR70	Diferencia entre ayer y hoy del Seno de la Dirección del Viento del nivel de 700 hPa a las 08:00 H local Sonda Puerto Montt
DCDIR50	Diferencia entre ayer y hoy del Coseno de la Dirección del Viento del nivel de 500 hPa a las 08:00 H local Sonda Puerto Montt
DSDIR50	Diferencia entre ayer y hoy del Seno de la Dirección del Viento del nivel de 500 hPa a las 08:00 H local Sonda Puerto Montt
IMD0	PMCA de hoy
IMD1	PMCA de mañana
DIFIM	Diferencia PMCA de hoy y día anterior
TMXD0LE	Temperatura Máxima del día de hoy en estación Las Encinas
TMND0LE	Temperatura Mínima del día de hoy en estación Las Encinas
TMND0LED1	Temperatura Mínima pronosticada para mañana Las Encinas, asumiendo pronóstico perfecto
TMNETAD1	Temperatura Mínima pronosticada para mañana Las Encinas, según modelo regional ETA

NOMBRE	DESCRIPCION
TMDD0LE	Temperatura Media del día de hoy en estación Las Encinas
TMXDALE	Temperatura Máxima del día de ayer en estación Las Encinas
TMNDALE	Temperatura Mínima del día de ayer en estación Las Encinas
TMDDALE	Temperatura Media del día de ayer en estación Las Encinas
HRMXD0LE	Humedad relativa Máxima del día de hoy en estación Las Encinas
HRMXDALE	Humedad relativa Máxima de ayer en estación Las Encinas
HRMND0LE	Humedad relativa Mínima del día de hoy en estación Las Encinas
HRMDD0LE	Humedad relativa Media del día de hoy en estación Las Encinas
HRMNDALE	Humedad relativa Mínima del día de ayer en estación Las Encinas
HRMDDALE	Humedad relativa Media del día de ayer en estación Las Encinas
PAMDLE	Presión atmosférica media del día de hoy estación Las Encinas
PAMDDALE	Presión atmosférica media del día de ayer estación Las Encinas
WSMELE	Intensidad del viento media del día de hoy en estación Las Encinas
WSMEDALE	Intensidad del viento media del día de ayer en estación Las Encinas
TMXD0PL	Temperatura Máxima del día de hoy en estación Padre Las Casas
TMND0PL	Temperatura Mínima del día de hoy en estación Padre Las Casas
TMDD0PL	Temperatura Media del día de hoy en estación Padre Las Casas
TMXDAPL	Temperatura Máxima del día de ayer en estación Padre Las Casas
TMNDAPL	Temperatura Mínima del día de ayer en estación Padre Las Casas
TMDDAPL	Temperatura Media del día de ayer en estación Padre Las Casas
HRMXD0PL	Humedad relativa Máxima del día de hoy en estación Padre Las Casas
HRMXDAPL	Humedad relativa Máxima del día de ayer en estación Padre Las Casas
HRMND0PL	Humedad relativa Mínima del día de hoy en estación Padre Las Casas
HRMDD0PL	Humedad relativa Media del día de hoy en estación Padre Las Casas
HRMNDAPL	Humedad relativa Mínima del día de ayer en estación Padre Las Casas
HRMDDAPL	Humedad relativa Media del día de ayer en estación Padre Las Casas
WSMEPL	Intensidad del viento media del día de hoy en estación Padre Las Casas
WSMEDAPL	Intensidad del viento media del día de ayer en estación Padre Las Casas
DT85LE	Diferencia entre la temperatura de 850 hpa de sonda Puerto Montt y temperatura mínima Las Encinas
DT92LE	Diferencia entre la temperatura de 925 hpa de sonda Puerto Montt y temperatura mínima Las Encinas
DT85PL	Diferencia entre la temperatura de 850 hpa de sonda Puerto Montt y temperatura mínima Padre Las Casas
DT92PL	Diferencia entre la temperatura de 925 hpa de sonda Puerto Montt y temperatura mínima Padre Las Casas
DECLIN	Declinación Solar

7.3.3 Estadística descriptiva de las variables usadas en el estudio

En las Tabla 7.3-3 y Tabla 7.3-4 se presentan algunas estadísticas de las variables incorporadas a la base de datos de las estaciones de Las Encinas y Padre Las Casas.

La base de datos incluye un total de 163 variables para ambas estaciones. La cantidad de datos por variable va desde un máximo de 732 hasta un mínimo de 243 datos, este último asociado a las variables del Radiosonda de Puerto Montt, específicamente lo relacionado con la inversión térmica.

Tabla 7.3-3 Estadística descriptiva de las variables incluidas en la base de datos Las Encinas años 2003-2006.

Variables	Nº datos	% de datos disponibles	Valor mínimo	Valor máximo	Valor promedio
DECLIN	732	100.0	-23.5	4.4	-14.7
MP24LE00L	708	96.7	7.2	321.3	68.1
MPMAX12HLED1	701	95.8	12.7	443.2	108.1
MPMAX12HLED0	702	95.9	12.7	443.2	108.0
MPMAX12HLEDA	702	95.9	12.7	443.2	107.9
MPMAXLE06D1	701	95.8	14.8	655.7	155.3
MPMAXLE06D0	702	95.9	14.8	655.7	155.1
MPMAXLE06DA	702	95.9	14.8	655.7	154.9
MP24LED1	699	95.5	10.1	338.7	87.4
MP24LED0	700	95.6	10.1	338.7	87.3
MP24LEDA	700	95.6	10.1	338.7	87.3
MP1HMAXLED1	707	96.6	18.7	1 164.0	217.5
MP1HMAXLE	708	96.7	18.7	1 164.0	217.3
MP1HMAXLEDA	708	96.7	18.7	1 164.0	216.8
TMXD0LE	725	99.0	2.8	29.1	14.1
TMXDALE	725	99.0	2.8	29.1	14.1
HRMXD0LE	725	99.0	56.0	100.0	96.8
HRMXDALE	725	99.0	56.0	100.0	96.8
TMND0LE	725	99.0	-4.9	16.0	5.4
TMNDOLED1	544/549	99.0	-4.9	16.0	5.4
TMNETAD1	463/549	84.3	-5.1	15.6	6.3
TMNDALE	725	99.0	-4.9	16.0	5.4
HRMND0LE	725	99.0	15.0	99.0	60.8
HRMNDALE	725	99.0	15.0	99.0	60.8
TMDD0LE	725	99.0	-1.7	18.6	9.3
TMDDALE	725	99.0	-1.7	18.6	9.3

WSMELE	725	99.0	0.3	6.9	1.7
WSMELEDA	725	99.0	0.3	6.9	1.7
HRMDD0LE	725	99.0	32.0	99.9	83.2
HRMDDALE	725	99.0	32.0	99.9	83.2
PAMDLE	725	99.0	959.9	1 021.5	1 004.1
PAMDLEDA	725	99.0	959.9	1 021.5	1 004.1
MPLE2406L	707	96.6	6.5	296.2	68.6
		96.9		1	
MPLE2412L MPLE1206LD1	709		7.1	277.1	68.4
	712	97.3	3.9	427.6	91.8
MPLE1206L	713	97.4	3.9	427.6	91.7
MPLE1218LD1	704	96.2	5.1	364.9	37.2
MPLE1218L	705	96.3	5.1	364.9	37.2
MPLE1218LDA	705	96.3	5.1	364.9	37.2
MPLE0602L	710	97.0	4.2	595.6	117.1
MPLE0602LDA	710	97.0	4.2	595.6	117.0
MPLE0602LD1	709	96.9	4.2	595.6	117.2
DT85LE	629.0	85.9	-11.9	15.2	-2.8
DT92LE	628.0	85.8	-7.1	16.0	0.6
MPLE2418D0	710.0	97.0	6.8	302.4	68.2
MPLEDA2418L	706.0	96.4	6.8	302.4	68.3
MPLE2418D1	706.0	96.4	6.8	302.4	68.4
MPLE1212D0	714.0	97.5	3.9	372.2	65.3
MPLE1212DA	710.0	97.0	3.9	372.2	65.3
MPLE1212D1	710.0	97.0	3.9	372.2	65.4
MPLE1200D0	709.0	96.9	6.0	391.8	64.4
MPLE1200DA	705.0	96.3	6.0	391.8	64.6
MPLE1200D1	705.0	96.3	6.0	391.8	64.5
MPLE0606D0	714.0	97.5	1.0	572.7	93.0
MPLE0606DA	710.0	97.0	1.0	572.7	93.0
MPLE0606D1	710.0	97.0	1.0	572.7	93.3
MPLE0612D0	708.0	96.7	3.0	239.3	37.4
MPLE0612DA	704.0	96.2	3.0	239.3	37.4
MPLE0612D1	704.0	96.2	3.0	239.3	37.5
MPLE0618D0	693.0	94.7	2.4	673.9	37.1
MPLE0618DA	689.0	94.1	2.4	673.9	37.2
MPLE0618D1	689.0	94.1	2.4	673.9	37.2
MPLE0600D0	711.0	97.1	3.5	437.7	91.4
MPLE0600DA	707.0	96.6	3.5	437.7	91.7
MPLE0600D1	707.0	96.6	3.5	437.7	91.6

MPLE0806D0	711.0	97.1	3.2	556.9	102.0
MPLE0806D0	707.0	96.6	3.2		102.0
=======				556.9	
MPLE0806D1	707.0	96.6	3.2	556.9	102.3
MPLE0812D0	707.0	96.6	3.0	292.5	42.8
MPLE0812DA	703.0	96.0	3.0	292.5	42.8
MPLE0812D1	703.0	96.0	3.0	292.5	42.8
MPLE0818D0	690.0	94.3	4.4	487.0	39.0
MPLE0818DA	686.0	93.7	4.4	487.0	39.1
MPLE0818D1	686.0	93.7	4.4	487.0	39.1
MPLE0800D0	705.0	96.3	5.4	375.1	76.7
MPLE0800DA	701.0	95.8	5.4	375.1	76.9
MPLE0800D1	701.0	95.8	5.4	375.1	76.8
MPMAX08HLED0	690.0	94.3	13.4	572.5	134.5
MPMAX08HLEDA	686.0	93.7	13.4	572.5	134.7
MPMAX08HLED1	686.0	93.7	13.4	572.5	134.9
IMD0	732.0	100.0	1.0	5.0	2.4
IMD1	728.0	99.5	1.0	5.0	2.4
DIFIM	728.0	99.5	-3.0	3.0	0.0
PASU08L	664.0	90.7	991.0	1 027.0	1 007.8
H0008L	646.0	88.3	-125.0	299.0	141.5
H9208L	634.0	86.6	533.0	929.0	778.6
TA9208L	634.0	86.6	-2.3	18.6	5.9
TPR925	634.0	86.6	-31.6	12.0	0.0
WD9208L	590.0	80.6	0.0	355.0	221.3
WS9208L	590.0	80.6	0.0	60.0	17.9
H8508L	635.0	86.7	1 229.0	1 606.0	1 467.4
TA8508L	635.0	86.7	-7.9	17.4	2.5
TPR850	634.0	86.6	-40.0	9.8	-5.9
WD8508L	591.0	80.7	0.0	356.0	248.0
WS8508L	591.0	80.7	1.0	71.0	20.9
H7008L	628.0	85.8	2 775.0	3 183.0	3 014.8
TA7008L	628.0	85.8	-32.9	9.8	-5.4
TPR700	608.0	83.1	-60.9	6.1	-19.5
WD7008L	585.0	79.9	0.0	355.0	253.1
WS7008L	585.0	79.9	2.0	76.0	27.7
H5008L	635.0	86.7	5 280.0	5 900.0	5 576.7
TA5008L	635.0	86.7	-38.3	-8.5	-21.4
TPR500	611.0	83.5	-69.3	-11.3	-36.2
WD5008L	590.0	80.6	20.0	355.0	263.9

			I		
WS5008L	590.0	80.6	3.0	150.0	43.1
Showalter	659.0	90.0	-0.3	23.3	8.6
K	498.0	68.0	-61.1	33.0	4.7
Total Totals	659.0	90.0	-0.8	61.6	39.3
H de To	658.0	89.9	79.0	4 238.3	1 873.4
P de To	658.0	89.9	608.2	1 013.0	814.0
P base inv	243.0	33.2	762.0	1 021.0	975.1
Alt base inv	243.0	33.2	79.0	2 131.0	378.6
T base inv	243.0	33.2	-4.5	11.8	3.4
P tope inv	243.0	33.2	85.0	1 009.0	929.5
Alt tope inv	243.0	33.2	122.0	2 259.0	741.7
T tope inv	243.0	33.2	0.8	19.6	9.3
DPS08L	624.0	85.2	-16.0	19.0	-0.1
DH0008L	594.0	81.1	-196.0	251.0	0.2
DH9208L	576.0	78.7	-209.0	248.0	0.8
DTA9208L	576.0	78.7	-11.2	12.8	0.0
DP9208L	634.0	86.6	0.0	44.0	5.9
DDP9208L	576.0	78.7	-36.8	42.5	0.1
DWD9208L	527.0	72.0	-355.0	355.0	-2.3
DWS9208L	527.0	72.0	-43.0	48.0	-0.2
SDIR928L	590.0	80.6	-20.9	41.4	4.6
DSDIR92	527.0	72.0	-39.5	45.7	-0.3
CDIR928L	590.0	80.6	-59.8	28.9	-8.1
DCDIR9208L	527.0	72.0	-58.6	61.7	0.2
DH8508L	577.0	78.8	-233.0	214.0	-0.2
DTA8508L	577.0	78.8	-11.2	11.7	0.0
DP8508L	634.0	86.6	0.0	49.0	8.3
DDP8508L	575.0	78.6	-39.9	39.5	0.1
DWD8508L	528.0	72.1	-350.0	335.0	-2.6
DWS8508L	528.0	72.1	-50.0	62.0	-0.2
SDIR8508L	591.0	80.7	-17.0	58.3	10.8
DSDIR85	528.0	72.1	-37.8	42.6	-0.2
CDIR858L	591.0	80.7	-65.0	38.4	-6.7
DCDIR85	528.0	72.1	-68.3	66.7	0.2
DH7008L	569.0	77.7	-229.0	325.0	0.7
DTA7008L	569.0	77.7	-29.6	26.8	0.1
DP7008L	608.0	83.1	0.0	49.0	13.9
DDP7008L	535.0	73.1	-42.0	47.7	0.3
DWD7008L	523.0	71.4	-345.0	330.0	-0.5

DWS7008L	523.0				
	020.0	71.4	-41.0	50.0	-0.2
SDIR7008L	585.0	79.9	-31.4	68.9	19.5
DSDIR70	523.0	71.4	-62.9	63.6	-0.2
CDIR7008L	585.0	79.9	-60.9	45.8	-3.7
DCDIR70	523.0	71.4	-46.9	71.0	-0.1
DH5008L	576.0	78.7	-400.0	480.0	1.1
ESP5008L	619.0	84.6	5 121.0	5 735.0	5 438.4
DESP08L	551.0	75.3	-354.0	388.0	2.4
DTA5008L	576.0	78.7	-19.6	15.0	0.1
DP5008L	610.0	83.3	0.0	46.0	14.6
DDP5008L	482.0	65.8	-41.6	42.7	0.3
DWD5008L	528.0	72.1	-320.0	305.0	-0.4
DWS5008L	528.0	72.1	-72.0	84.0	0.2
SDIR508L	590.0	80.6	-32.0	147.7	32.9
DSDIR50	528.0	72.1	-77.7	81.7	0.0
CDIR508L	590.0	80.6	-81.8	63.4	-3.9
DCDIR50	528.0	72.1	-81.4	100.7	0.1

Tabla 7.3-4 Estadística descriptiva de las variables incluidas en la base de datos Padre Las Casas años 2003-2006³.

Variables	Nº datos	% de datos disponibles	Valor mínimo	Valor máximo	Valor promedio
MP1HMAXPL	658.0	89.9	15.0	631.5	152.8
MP1HMAXPLDA	658.0	89.9	15.0	631.5	152.9
MP1HMAXPLD1	657.0	89.8	15.0	631.5	152.7
MPPL2400L	658.0	89.9	7.7	201.1	50.5
MPPL24D0	652.0	89.1	12.5	217.7	64.4
MPPL24DA	652.0	89.1	12.5	217.7	64.4
MPPL24D1	651.0	88.9	12.5	217.7	64.2
MPPL2406L	658.0	89.9	8.2	215.3	50.6
MPPL2412L	660.0	90.2	8.7	201.7	50.5
MPPL1206L	666.0	91.0	3.0	290.4	54.5
MPPL1206D1	665.0	90.8	3.0	290.4	54.5
MPPL1218L	655.0	89.5	4.4	128.9	25.8
MPPL12DA18L	655.0	89.5	4.4	128.9	25.8

³ Para Padre Las Casas, corresponden las mismas variables del Radiosonda de Puerto Montt. Lo mismo ocurre con las variables DECLIN, IMDO, IMD1 y DIFIM.

Abril de 2007

Centro Nacional del Medio Ambiente

MPPL1218D1	654.0	89.3	4.4	128.9	25.7
MPMAX12HPL	653.0	89.2	10.6	301.5	71.7
MPMAX12HPLDA	653.0	89.2	10.6	301.5	71.7
MPMAX12HPLD1	652.0	89.1	10.6	301.5	71.5
MPPL0602D0	661.0	90.3	2.2	461.0	75.9
MPPL0602DA	661.0	90.3	2.2	461.0	75.8
MPPL0602D1	660.0	90.2	2.2	461.0	75.9
MPMAXPL06D0	653.0	89.2	12.1	462.8	107.4
MPMAXPL06DA	653.0	89.2	12.1	462.8	107.3
MPMAXPL06D1	652.0	89.1	12.1	462.8	107.2
TMDDOPL	639.0	87.3	-1.0	16.6	9.6
TMDDAPL	638.0	87.2	-1.0	16.6	9.6
TMNDOPL	639.0	87.3	-3.2	14.3	5.9
TMNDAPL	638.0	87.2	-3.2	14.3	5.9
TMXDOPL	639.0	87.3	2.1	29.2	13.9
TMXDAPL	638.0	87.2	2.1	29.2	13.9
WSMEPL	639.0	87.3	0.2	21.2	3.0
WSMEDAPL	638.0	87.2	0.2	21.2	3.0
HRMDDOPL	627.0	85.7	27.4	96.3	78.3
HRMDDAPL	626.0	85.5	27.4	96.3	78.3
HRMNDOPL	627.0	85.7	12.6	94.9	59.6
HRMNDAPL	626.0	85.5	12.6	94.9	59.6
HRMXDOPL	627.0	85.7	53.2	100.0	90.2
HRMXDAPL	626.0	85.5	53.2	100.0	90.2
DT85PL	556.0	76.0	-12.8	15.7	-3.4
DT92PL	554.0	75.7	-6.9	16.5	0.0
MPPL1212D0	667.0	91.1	2.5	139.8	29.7
MPPL1212DA	664.0	90.7	2.5	139.8	29.7
MPPL1212D1	663.0	90.6	2.5	139.8	29.6
MPPL1200L	658.0	89.9	7.0	252.5	51.4
MPPLDA1200L	654.0	89.3	7.0	252.5	51.6
MPPL1200D1	654.0	89.3	7.0	252.5	51.4
MPPL0606D0	665.0	90.8	1.0	217.2	33.2
MPPL0606DA	661.0	90.3	1.0	217.2	33.3
MPPL0606D1	661.0	90.3	1.0	217.2	33.2
MPPL0612D0	661.0	90.3	2.3	166.2	26.0
MPPL0612DA	657.0	89.8	2.3	166.2	26.1
	657 O	89.8	2.3	166.2	26.0
MPPL0612D1	657.0	09.0	2.0	100.2	20.0

MPPL0618DA	633.0	86.5	2.2	149.9	26.0
MPPL0618D1	633.0	86.5	2.2	149.9	25.8
MPPL0600LD0	661.0	90.3	3.3	436.4	75.8
MPPLDA0600L	657.0	89.8	3.3	436.4	76.0
MPPL0600D1	657.0	89.8	3.3	436.4	75.8
MPPL0806D0	661.0	90.3	2.1	266.4	46.6
MPPL0806DA	657.0	89.8	2.1	266.4	46.7
MPPL0806D1	657.0	89.8	2.1	266.4	46.7
MPPL0812D0	660.0	90.2	2.0	130.3	23.4
MPPL0812DA	656.0	89.6	2.0	130.3	23.5
MPPL0812D1	656.0	89.6	2.0	130.3	23.4
MPPL0818D0	629.0	85.9	3.1	146.3	28.0
MPPL0818DA	625.0	85.4	3.1	146.3	28.0
MPPL0818D1	625.0	85.4	3.1	146.3	27.9
MPPL0800D0	652.0	89.1	6.4	340.6	63.4
MPPL0800DA	648.0	88.5	6.4	340.6	63.6
MPPL0800D1	648.0	88.5	6.4	340.6	63.4
MPMAX08HPLD0	623.0	85.1	11.2	415.5	90.4
MPMAX08HPLDA	619.0	84.6	11.2	415.5	90.7
MPMAX08HPLD1	619.0	84.6	11.2	415.5	90.5

7.4 Estación meteorológica en altura

Una de las recomendaciones del Estudio "Mediciones Meteorológicas y de Calidad de Aire en Temuco y Rancagua para la obtención de antecedentes técnico-científicos para la generación de la norma de calidad primaria para material particulado fino MP2.5" realizado por CENMA para CONAMA en el año 2000 fue instalar una estación meteorológica en altura para fines de pronóstico meteorológico. Inicialmente se recomendó el Cerro Ñielol o el Conun-hueno.

A fines de octubre se realizaron las primeras visitas para ubicar un sitio e instalar la estación meteorológica de Temuco. El cerro Conun-hueno fue descartado por razones de seguridad ante posibles actos vandálicos y las dificultades del acceso durante el período de otoño-invierno. En el cerro Ñielol se verificó la factibilidad de instalar la estación en las torres de comunicación de los canales de televisión, pero finalmente no autorizaron la instalación de la estación.

A comienzos de Enero CONAMA Región de La Araucanía inició las gestiones para instalar en la Torre de Vigilancia (Torre Oyama) del cerro Oyama perteneciente a Bosques de Arauco S.A. El lugar está ubicado frente a la localidad de Colonia, a unos 20 Km de la estación Las Encinas. El acceso a la torre requiere recorrer cerca de 50 Km. por un camino que bordea el cordón montañoso del Ñielol. El día 17 de enero personal CENMA visito un lugar de seleccionado, con el objetivo de inspeccionar el lugar y ver la representatividad de la estación meteorológica, además, para establecer el lugar de instalación de los sensores.

La fotografía siguiente ilustra la ubicación de la torre sobre el cerro Oyama.

Fotografía de Torre Oyama

El 13 de marzo fue autorizada la instalación de la estación meteorológica, la cual fue instalada el 16 de marzo de 2007 sobre las barandas de la caseta de vigilancia ubicada en la Torre Oyama, a 40 metros de altura, mediante el uso de abrazaderas y un brazo extensible para disminuir el efecto de la Torre sobre la medición de viento.

Las mediciones de variables meteorológicas se realizan con sensores que cumplen con los estándares de la Organización Mundial de Meteorología. Los sensores son conectados a un datalogger que almacena y preprocesa la información, para luego almacenar promedios de 15 minutos de cada una de las variables medidas. Además, permite la conexión remota para la adquisición de la información, usando, en este caso, un teléfono celular.

La figura siguiente se muestra la ubicación de la estación de meteorológica Oyama respecto a las estaciones "Las Encinas" (aprox. 20 Km.) y a la Estación de Padre Las Casas (aprox. 23 Km).

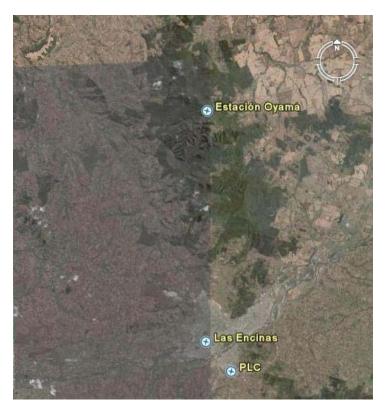


Figura 7-1 Ubicación Torre Oyama respecto a Las Encinas y Padre Las Casas

La Tabla siguiente resume las características principales de cada uno de ellos.

Dewcx

1) Descripción y ubicación									
1.1) Identificación del	Nombre Estación Meteorológica Torre Oyama								
sitio	Ubicación	Bosques Arauco S.A. Temuco							
1.2)Coordenadas	707279.32 E	5729009.55 S 574 msnm							

1.3)Descripción del sitio:

Estación ubicada en los recintos de Bosques Arauco S.A. en el cordón montañoso del cerro Ñielol.

La estación esta ubicada al norte de la ciudad de Temuco.

2) Inicio de Mediciones :

16 de Marzo de 2007

3) Variables medi	das					
Variables Medidas		Frecuencia			Resolución	
Velocidad del vient	to	Cor	ntinuo		Promedio cada 15 minutos	
Dirección del vien	to	Cor	ntinuo		Promedio cada 15 minutos	
Temperatura		Cor	ntinuo		Promedio cada 15 minutos	
Humedad Relativa		Cor	ntinuo		Promedio cada 15 minutos	
4) Equipos						
Instrumento	Marca	,	Modelo		Características	
Anemómetro	RM YOUN	NG	05103-L34	Exactitud T ^a Operad Dirección Rango: 0 Exactitud	-60 m/s de velocidad: 1.0 m/s l: ± 0.3 m/s ción: -50°C a 50°C <u>n</u> -360°	

Higrómetro y Termómetro	Vaisala		HMP45C-L11	T ^a Operació Sensor: 100 Humedad Rango: 0-90 Sensor: HU Exactitud: ±	ición: -40°C a 60°C ón: -40°C a 60°C 00 PTR, IEC 751 1/3 Clase B
Datalogger	Campbell		CR800	Sistema d	e Operación: PakBus®
Teléfono MODEM	Campbell		COM210	T ^a de Operación: -25°C a +50°C	
Panel Solar	BF	Solar	SP10	10 Watt /Hora	
5) Ubicación de ed	quipos	S			
5.1) Distancia Ver	tical	Descripción			Distancia (m)
desde el suelo		Temper	atura		40 m
		1	Humedad Relativa		40 m
		Velocia	dad del viento		40 m
			ción del viento		40 m
		trucciones cerca		No aplica	
5.3)Distancia a Ca	lles	Camino	de tierra		No aplica

7.5 Diseño de mecanismo de entrega de información a CONAMA Región de la Araucanía

A continuación se detalla el mecanismo de entrega de información sugerente de CENMA a CONAMA IX región.

Puesta en marcha, validación y operación del Sistema de Pronóstico de MP10, generando la siguiente información:

Reportes Diarios

Informes emitidos a las 12:00 horas de cada día

1. Reporte Matutino (preliminar)

Contempla la siguiente información:

- o Resumen de valores de MP10 observados el día anterior, tabla y gráfico
- o Resumen valores de MP10 actuales (08 horas), tabla
- o Inversión térmica sobre Temuco (08 horas) (dT entre Oyama y Las Encinas)
- o Tabla de contingencia acierto PMCA (comparación entre PMCA pronosticado y observado)
- Evaluación situación observada el día anterior y perspectivas para los próximos 5 días: Análisis de las condiciones meteorológicas observadas hasta ese momento y su evolución, a escala sinóptica, regional y local sobre la Zona Centro-Sur del país (aplicada a Temuco) y Condición meteorológica prevista, Potencial Meteorológico de Contaminación Atmosférica PMCA de la mañana y la noche (el PMCA incluirá 5 categorías: 1 (Bajo), 2 (Regular/Bajo), 3 (Regular), 4 (Regular/Alto) y 5 (Alto)), Pronóstico de temperaturas extremas (T mín y T máx), Porcentaje de probabilidad de precipitaciones y Comentarios (relacionados con la evolución de la estabilidad, los probables episodios o comentario relevante para el pronóstico).
- 2. Resultado del Modelo de Calidad de Aire

Contempla la siguiente información:

- Valores MP10 de entrada, Condición prevista para el día siguiente (máximos valores de MP10 esperados) para las estaciones de Las Encinas y Padre Las Casas, Condición Relevante (peor condición esperada, incluirá 4 niveles: 0 (Bueno a Regular), 1 (Alerta), 2 (Preemergencia) y 3 (Emergencia)).
- o Tabla de contingencia acierto Modelo Calidad de Aire (comparación entre concentraciones pronosticadas y observadas).

1. Reporte Vespertino (definitivo)

Contempla la siguiente información:

- Evaluación de la situación observada del momento y perspectivas para los próximos 5 días: Condición meteorológica prevista, PMCA de la mañana y la noche, Pronóstico de temperaturas extremas (T mín y T máx), Porcentaje de probabilidad de precipitaciones y Comentarios.
- Opinión Experta: incluye el resultado del Modelo de Calidad de Aire, la opinión experta en relación a la evolución de las condiciones meteorológicas y de ventilación asociada a la contaminación, el comentario del resultado del modelo y recomendaciones para la población si lo amerita.

2. Resultado Modelo de Calidad de Aire

Sobre la base del monitoreo diario de las condiciones meteorológicas y de ventilación sobre Temuco, y la actualización y análisis de los modelos de pronóstico numérico del tiempo, se confirma el pronóstico de calidad de aire emitido en la mañana o, eventualmente, si hay un cambio en el pronóstico del PMCA para el día siguiente, el modelo se ejecutará nuevamente y se enviará el resultado definitivo.

7.5.1 Formatos sugerentes para reportes del sistema de pronóstico

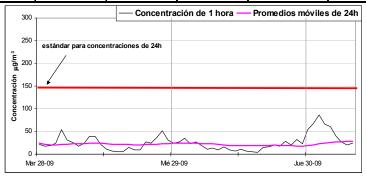
El sistema de pronósticos diario de calidad de aire que se requiere implementar incluye varias componentes, además del modelo predictivo:

- La recepción y recolección continúa de información meteorológica de escala continental, nacional y de la región, obtenida desde centros de pronóstico numérico global y regional, desde la Dirección Meteorológica de Chile, y la red de estaciones meteorológicas automáticas que se operan en la región, especialmente orientada al problema de contaminación atmosférica de Santiago.
- Un seguimiento continuo, de las condiciones meteorológicas y de calidad de aire en la región.
- La preparación del pronóstico meteorológico orientado a calidad de aire, para los días siguientes, y la emisión de reportes dos veces por día, en condiciones normales y con mayor frecuencia, durante episodios.
- La estimación de la calidad del aire esperada para el día siguiente, usando el modelo desarrollado en CENMA y otros modelos que estén disponibles.

- El análisis de los resultados de esos modelos y la incorporación de una opinión experta, entregada por profesionales de reconocido prestigio y larga experiencia en pronósticos de condiciones atmosféricas para esta región.
- En este contexto, el modelo predictivo de CENMA es parte de un sistema más general, que operaría en forma continua durante todos los días del año, entregando un servicio de pronóstico para apoyar la gestión de calidad del aire en Temuco, cumpliendo la misión de anticiparse a los eventos de contaminación y comunicándolo en forma eficiente y oportuna a la autoridad ambiental regional.

Se presentan los formatos sugerentes para el reporte matutino, salida del modelo de calidad de aire y reporte definitivo:

Reporte Matutino Condiciones de ventilación para Temuco Orientado a concentraciones de MP10 Preparado por CENMA para CONAMA IX Región


Actualización a las 12:00 horas de cada día

Viernes 01 Diciembre 2006

(ESTO CONSTITUYE SÓLO UN EJEMPLO)

Resumen valores MP10 AYER (Valores preliminares Las Encinas)

Concentraciones 1h					Concentrac	ión 24h	
Máximo [μg/m³]	Hora ocurrencia	N° horas $>150[\mu g/m^3]$	Promedio día [μg/m³]	Máxima [μg/m³]	Hora ocurrencia	Excede estándar	N° horas $>150[\mu g/m^3]$
35,5	2:00	0	17,7	24,8	2:00	NO	0

Concentraciones de 1h y promedios móviles 24h de MP10 - Las Encinas (últimos 2 días)

Resumen valores MP10 HOY 08h (Valores preliminares Las Encinas)

Concentración Horaria	23.8 μg/m³
Promedio Móvil 24 horas	28.3 μg/m³

Inversión térmica sobre Temuco 08h (comparación T° 250m y T° 2m)

Estaciones	Temuco y Oyama
dт (T _{Oyama} -Т _{Тетисо})	8.6°C

Tabla de contingencia acierto PMCA

PMCA	Observado						
Pronos 24	1	2	3	4	5	Total	% Acierto
1	46	5	0	0	0	51	90,2
2	11	120	8	0	0	139	86,3
3	0	14	88	13	0	115	76,5
4	0	0	11	22	0	33	66,7
5	0	0	0	0	0	0	
Total	57	139	107	35	0	338	
%Acierto	80,7	86,3	82,2	62,9			
N° Aciertos	276						
%Acierto Total	81,7						

Perspectivas PMCA a 5 días

Día	Condición prevista	PMCA en la mañana	PMCA en la noche	T° (°C) mín/máx	Precip (%)	Comentarios
Jueves 30	Anroximación de dorsal		4	6.2/22.5		Gradual estabilización.
			4	5.4/24		Episodio en curso. Muy estable hasta la noche.
			2	07/23		Termina evento A(t) Paulatina inestabilización.
_			1	09/17	20	Inestabiliza rápidamente, chubascos al atardecer.
Lunes 04	Presencia y paso de vaguada.	1	1	08/13	80	Inestable, lluvia
Martes 05	Aproximación de dorsal. Ingreso alta fría.	2	3	04/19		Sostenida estabilización. Se configura un probable episodio.

PMCA: Potencial Meteorológico de Contaminación Atmosférica referido a MP10

PMCA	Categoría
1	Bajo
2	Regular/Bajo
3	Regular
4	Regular/Alto
5	Alto

Terminología Meteorológica

Vaguada en altura: Área de baja presión y baja temperatura en altura, asociada a movimientos de ascenso de masas de aire y frecuente formación de nubosidad. El ascenso del aire normalmente determina un debilitamiento de la inversión térmica cerca de la superficie.

Dorsal en altura: Área de alta presión y alta temperatura en altura, asociada a movimientos de descenso de masas de aire. El aire al descender se calienta y determina una intensificación de la inversión térmica cerca de la superficie.

Vaguada costera: Área de baja presión en superficie, que se presenta frente a la costa central de Chile, usualmente ubicada entre el área de alta presión semipermanente del Pacífico sur (Alta Subtropical) y un área de alta presión típica de una masa de aire frío que se ha desplazado desde el Sur hacia el centro de Argentina. La vaguada costera determina que el aire fluya desde el Este, descendiendo desde la cordillera hacia el Oeste, intensificando la capa de inversión térmica y acercándola a la superficie.

Flujo zonal del viento en altura: Transporte del viento en la horizontal de Oeste a Este.

Frente frío: Perturbación que produce inestabilidad atmosférica, buena ventilación y precipitaciones.

Frente cálido: Perturbación que produce precipitaciones, pero con una atmósfera más estable que el frente frío.

Inversión Térmica: Capa donde se observa aumento de la temperatura con el incremento de la altura, lo que implica una inhibición de la mezcla vertical.

Reporte Calidad de Aire (ESTO CONSTITUYE SÓLO UN EJEMPLO)

MP10 TEMUCO

PRONÓSTICO EXPERIMENTAL DE CALIDAD DE AIRE Modelo desarrollado por CENMA, Diciembre 2006

ECUACIONES DE PRONÓSTICO CALIDAD DE AIRE POR MP10

Fecha: 05-Dic-06 Hora Emisión: 12 h

	HC	ΟY	MANANA		RESUM	MEN CONDICION P	PREVISTA PARA MANANA		
ESTACIONES DE	Promedio móvil 24 h máximo		Promedio móvil 24 h máximo		Con Sonda		Sin Sonda		
MONITOREO	05-D	ic-06	06-D	06-Dic-06		Descripción	Nivel	Descripción	
	Con Sonda	Sin Sonda	Con Sonda	Sin Sonda					
Las Encinas	34	25	51	45	0	BUENO	0	BUENO	
Padre Las Casas	24	29	30	30	0	BUENO	0	BUENO	

Condic. Relevante	34	29	51	45	0	BUENO	0	BUENO
Nivel	0	0	0	0		-		
Descripción	BUENO	BUENO	BUENO	BUENO		Nivel	Descripción	MP10 ug/m3

Nivei	Descripcion	MP10 ug/m3
0	BUENO	<150
0	REGULAR	150 <mp10<194< th=""></mp10<194<>
1	ALERTA	195 <mp10<239< th=""></mp10<239<>
2	PREEMERGENCIA	240 <mp10<329< th=""></mp10<329<>
3	EMERGENCIA	>330

Tabla de Contingencia: Acierto Modelo

Tabla de Contingencia:						
Desde 1 abril 2005		Pronos				
Observado	0	0 1 2 3				% Acierto
0	148	13	1	0	162	91.4
1	3	2	0	0	5	40
2	1	1	0	0	2	0
3	0	0	0	0	0	
Total	152	16	1	0	169	
% Acierto	97.4	12.5	0			
Número aciertos	150					

% Acierto total

Reporte Vespertino Condiciones de ventilación para Temuco Orientado a concentraciones de MP10 Preparado por CENMA para CONAMA IX Región

Actualización a las 17:30 horas de cada día

Viernes 01 Diciembre 2006

Perspectivas PMCA a 5 días

	Perspectivas PMCA a 5 dias										
Día	Condición prevista	PMCA en la mañana	PMCA en la noche	T° (°C) mín/máx	Precip (%)	Comentarios					
Viernes 01	Aproximación y presencia de dorsal	4	4	5.4/24	1	Probable episodio. Muy estable.					
Sábado 02	Paso de dorsal. Aproximación de vaguada.	3	2	07/23		Culmina episodio. Gradual inestabilización.					
Domingo 03	Aproximación de vaguada.	2	1	09/17	70	Inestabiliza rápidamente, chubascos al atardecer.					
Lunes 04	Presencia y paso de vaguada.	1	1	08/13	80	Inestable, lluvia					
Martes 05	Aproximación de dorsal. Ingreso alta fría.	2	4	04/19		Sostenida estabilización. Se configura un probable episodio.					
Miércoles 06	Aproximación de dorsal. Alta fría.	4	5	01/20		Muy estable. Probable episodio.					

Opinión Experta de CENMA

La opinión experta preparada por CENMA usando los Modelos Meteorológicos y de Calidad de Aire, es la siguiente:

Resultado Modelo Calidad de Aire: Regular

Opinión experta: La dorsal que ha estabilizado marcadamente la atmósfera afectará a la zona hasta esta noche previéndose altos valores de MP10 desde las 17 a las 02 am, luego el aire se inestabilizará sostenidamente debido a la proximidad de una vaguada, culminando con esto el episodio Tipo A(t). Para mañana se prevé valores horarios bajos de MP10 tanto en la mañana como en la noche.

Recomendaciones para la población: Se recomienda a la población más susceptible, no realizar actividades físicas al aire libre entre las 17 horas de hoy y el resto de la noche. Para mañana no hay recomendaciones.

Recomendaciones para reducir la exposición personal

- Cuando se pronostica PMCA 1 o 2 no hay recomendaciones para la población.
- Cuando se pronostica PMCA 3, la población más susceptible (niños, ancianos y personas con afecciones respiratorias), no deben realizar actividades físicas al aire libre entre las 17:00 y las 02:00 horas.
- Cuando se pronostica PMCA 4 y 5, se amplía la recomendación anterior en horario de 17 a 11 horas.

