GUÍA DE AUTODIAGNÓSTICO

Eficiencia Energética para Establecimientos Educacionales

GUÍA DE AUTODIAGNÓSTICO

Eficiencia Energética para Establecimientos Educacionales

GOBIERNO DE CHILE

Autores

Luis Hinojosa Castillo Juan Luis Olguín Marschhausen **Fundación Chile**

Comité Editorial

Departamento de Inversiones y Departamento de Infraestructura Educacional

División de Planificación y Presupuesto Ministerio de Educación

Departamento de Educación Ambiental y Participación Ciudadana

Comisión Nacional del Medio Ambiente

Programa País de Eficiencia Energética

Comisión Nacional de Energía

Colaboradores

María Angélica Palacios Fernández

Paola Molina O'Ryan Ecoarq Colegio de Arquitectos de Chile

Christopher James Whitman Coordinador del Laboratorio de Energía e Iluminación de la Universidad Andrés Bello y miembro de Ecoarq.

Diseño y producción

www.publisiga.cl

La fotografía de la portada es de propiedad del Proyecto Conjunto MINEDUC/UNESCO " Reforma Educacional Chilena: Optimización de la inversión en infraestructura educativa.

Índice de Contenidos

Inti	oducci	ión
Est	ructura	a de la Guía
٩n	álisis d	le las instalaciones y de su uso
3.1	Concep	otos básicos
2	Caracte	erísticas generales
.3	Definic	ión de zonas y usos de energía
	3.3.1	Planos del establecimiento y sistemas energéticos
3.4	Determ	ninando el confort del establecimiento educacional
	3.4.1	Horas de uso del establecimiento
Col	nocien	do las Características Constructivas
.1	Concep	otos básicos
4.2	Identifi	cando la envolvente
.3	Oportu	nidades de mejoras térmicas
Αn	álisis d	le las facturas de energía y agua
5.1	Conoci	endo las facturas de electricidad
	5.1.1	Conceptos básicos
	5.1.2	Analizando la factura de electricidad
5.2	Conoci	endo las facturas de combustible
	5.2.1	Conceptos básicos
	5.2.2	Analizando cuentas de combustible
	5.2.3	Matriz de consumos energéticos
		endo la factura de agua
.4		de consumo y emisiones de dióxido de carbono (CO2)
	5.4.1	Índices energéticos y de agua
	5.4.2	Emisiones de CO ₂

Coi	nocieno	lo los Sistemas Consumidores de Energía Eléctrica	30
6.1	Conocie	endo los Sistemas de Iluminación	30
	6.1.1	Conceptos básicos	30
	6.1.2	Algunos tipos de lámparas y luminarias	30
	6.1.3	Identificando las luminarias y lámparas del establecimiento	32
	6.1.4	Determinando las luminarias en cada recinto	33
	6.1.5	Ordenando la información recolectada	34
	6.1.6	Estableciendo un índice de iluminación	34
	6.1.7	Estimando el consumo de energía	36
	6.1.8	Opciones de Eficiencia Energética en los Sistemas de iluminación	36
6.2	Conocie	ndo los Equipos Computacionales	39
	6.2.1	Conceptos básicos de los equipos computacionales	39
	6.2.2	Conociendo los tipos de computadores	39
	6.2.3	Estimando el consumo de energía	40
	6.2.4	Opciones de Eficiencia Energética en los equipos computacionales	40
6.3	Otros ed	quipos	40
	6.3.1	Identificando los otros equipos consumidores	40
	6.3.2	Estimando el consumo de energía	41
6.4	Distribu	ción del consumo de energía eléctrica	42
Coı	nocienc	lo los Sistemas Consumidores de Energía Térmica	43
7.1	Agua Ca	aliente Sanitaria (ACS)	43
	7.1.1	Conceptos básicos	43
	7.1.2	Consumidores de agua caliente sanitaria	44
	7.1.3	Sistemas de producción y distribución.	44
7.2	Calefaco	sión	45
	7.2.1	Conceptos básicos	45
	7.2.2	Recintos calefaccionados y sistemas de calefacción.	46
	7.2.3	Sistemas de producción y distribución	46
	7.2.4	Opciones de Eficiencia Energética para ACS y Calefacción	47

	v.
	a.
-	_
	_
	u
	⊆
	=
	_
	=
	C
	T
	"
	C
	=
	_
-	$\overline{}$
- 1	$\overline{}$
	_
	C/
	=
	_
	-
	$\overline{}$
	=
	ш
	_
	$\overline{}$
	\vdash
	=
	c .
	=
	a:
-	_
-	_
	Œ
٠.	
	cr
	v.
- 1	1
-	_
	_
	u
	_
	$\overline{}$
	"
	\subseteq
	_
	"
	८:
	_
	-
	a.
	=
	$\overline{}$
	_
	a.
	4
	⊆
- 1	1
	_
	π
	_
	с.
	=
	_
	=
	_
- 0	_
-	
-	-
	a.
-	=
	\subset
	-
	_
	U.
-	
	=
	_
	=
	CC
	-
-	
	=
	C
	=
	-
	-
<	1
	4
	_
	a:
-	_
	T
-	
	CALLES DE ALITOCIDATION DE L'ICIENCID FINE CONTROL ESTADIBLIMIENTOS ESTADIBLES
-	т
-	۰

Ag	ua Pot	able	48
8.1	Identifi	cando los puntos de consumo	48
8.2	Medida	as para utilizar el agua eficientemente	48
	8.2.1	Conceptos básicos	48
	8.2.2	Medidas que requieren una baja o nula inversión	49
	8.2.3	Medidas que requieren una mayor inversión	50
Pla	n de A	cción	53
10 1	Diforon	nciando las medidas identificadas	53
			53 54
10.2	rrogra	ma de gestión energética	54
Bib	liograf	fía	55

10 11

Presentación

Para este gobierno, es prioritario avanzar en el desarrollo de fuentes de energía y en el uso eficiente de éstas, impulsando un crecimiento económico adecuado que nos permita mejorar la calidad de vida de todos los chilenos, proteger al medio ambiente y asegurar el suministro energético para el país.

La Comisión Nacional del Medio Ambiente (CONAMA) con el apoyo de la Comisión Nacional de Energía (CNE), a través de su Programa País de Eficiencia Energética (PPEE), cuya misión es "consolidar el uso eficiente como una fuente de energía, contribuyendo al desarrollo energético sustentable de Chile", han venido desarrollando un trabajo conjunto en el ámbito de la educación, relevando la importancia de la Eficiencia Energética en el curriculum escolar con un enfoque integral, considerando todos los espacios del proceso educativo desde lo pedagógico hasta la relación con la comunidad.

Para llevar a cabo este trabajo, se ha desarrollado material informativo y educativo, que permitirá entregar información relevante para mejorar las competencias docentes -a través de actividades de sensibilización y capacitación- que marcarán las pautas para implementar una cultura de Eficiencia Energética.

A partir del análisis y sistematización de auditorías energéticas en establecimientos educativos de diversas regiones del país -realizadas por el PPEE y por CONAMA- se detectaron problemas en la infraestructura y el uso de la energía, lo que a su vez, genera espacios poco adecuados para el desarrollo de las actividades educativas que en ellos se promueven.

Así, se advirtió que existen inadecuadas condiciones del espacio de trabajo para los profesores y malas condiciones de confort que impiden una buena concentración y aprendizaje en los niños: frío en invierno, calor en verano, nulos sistemas de confort térmico, mala ventilación, consumo de agua por sobre los niveles aceptables, entre otros.

Para contar con herramientas que nos permitan elaborar una política sustentable de los espacios educativos, el Ministerio de Educación (MINEDUC) y el Colegio de Arquitectos se han sumado a este trabajo, apoyando en la elaboración de esta Guía de Autodiagnóstico en Eficiencia Energética.

Vale destacar que, desde 1997, el MINEDUC se encuentra aplicando la "Reforma Educacional Chilena: optimización de la inversión en infraestructura educativa" que contempla una serie de iniciativas en el ámbito de la arquitectura de apoyo a la Reforma Educacional, con la finalidad de mejorar las condiciones de aprendizaje.

Las líneas fundamentales de dicha reforma se centran, entre otros, en impulsar el diseño de establecimientos educacionales que incorporen las variables medioambientales y el uso de energías renovables, además de promover la adaptación de establecimientos ya existentes al uso de energías sustentables, con el objetivo de mejorar las condiciones infraestructurales y de vida

Así, hoy el sector público y privado se unen para trabajar por un mismo objetivo, dando cuenta de la importancia que tiene una infraestructura adecuada y espacios de calidad para que los niños y niñas de nuestro país puedan optar a desarrollar todas sus capacidades de aprendizaje.

Esta Guía entrega lineamientos para que puedan ser integrados en los diferentes establecimientos educacionales, y es por ello que hacemos un llamado a que todos participen en potenciar elementos que pueden significar un importante aporte al desarrollo de nuestros jóvenes

Juan Fernández Bustamante Jefe de EDUPAC CONAMA Andrés Romero Celedon
Director ejecutivo PPEE
CNE

Introducción

La Comisión Nacional de Energía, a través del Programa País Eficiencia Energética, se ha propuesto promover medidas de Eficiencia Energética, que permitan al país desacoplar la curva de crecimiento económico del crecimiento de la demanda energética, a fin de avanzar hacia una mayor sustentabilidad ambiental del proceso de desarrollo. Para lograrlo, esta instancia ha implementando un plan estratégico de trabajo en coordinación con diversos actores públicos y privados.

Una de las bases para implementar este programa es sin lugar a dudas la educación, entendida como un vehiculo transformador de la cultura, imprimiéndole un énfasis de mayor corresponsabilidad ciudadana en las temáticas ambientales y de sustentabilidad.

La gestión ambiental de los establecimientos educacionales se reforzó a partir del año 2003, con la puesta en marcha del Sistema Nacional de Certificación Ambiental de Establecimientos Educacionales (SNCAE), impulsado por la Comisión Nacional de Medio Ambiente (CONAMA).

La estrategia de educación ambiental implementada a través del SNCAE, entrega una mirada transversal enmarcada en la sustentabilidad, buscando coherencia e integración entre la realidad local, los contenidos educativos pertinentes a ella y la consecuente responsabilidad en la gestión del establecimiento. El hilo conductor de esta mirada está dado por la capacidad de insertar al establecimiento educativo en su dinámica territorial, a través del reconocimiento de sus problemas, oportunidades y desafíos ambientales.

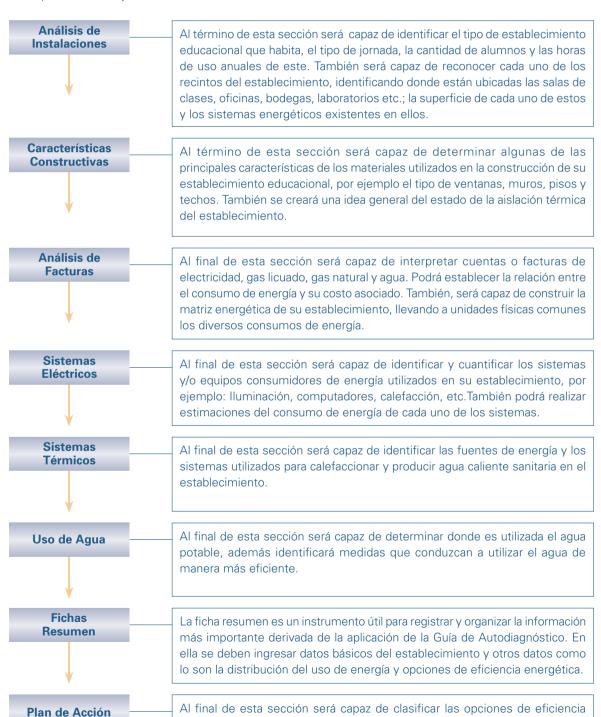
A través del SNCAE se establecen estándares para medir la presencia del componente ambiental en tres ámbitos del quehacer educativo: el pedagógico, la gestión escolar y las relaciones del establecimiento con el entorno.

En este contexto el PPEE y CONAMA han firmado un convenio de colaboración interinstitucional, que busca desarrollar instrumentos orientados hacia los agentes educativos que permitan facilitar la implementación del concepto de eficiencia energética en su práctica educativa de manera integral. Uno de estos instrumentos es la presente Guía de Autodiagnóstico de Eficiencia energética para Establecimientos Educacionales (en adelante Guía).

En el desarrollo de esta guía, se entenderá por Eficiencia Energética la reducción del consumo de energía sin que esto signifique una disminución de calidad de servicio ofrecido. Un buen ejemplo de esto son las conocidas lámparas de ahorro de energía, las cuales entregan la misma cantidad de luz que las lámparas tradicionales (incandescentes) con un consumo de energía cinco veces menor.

La Guía es una herramienta diseñada para que el usuario sea capaz de comprender y cuantificar su consumo de energía. Además, para identificar alternativas que conduzcan a utilizar la energía de manera eficiente.

Durante el desarrollo de la Guía los temas son enseñados a través de ejemplos de aplicación, basados en información de un determinado establecimiento educacional. La idea es que los usuarios recopilen y ordenen la información de acuerdo a los ejemplos mostrados


Esta es una guía amigable, en este sentido puede ser utilizada por cualquier persona. No es necesario tener conocimientos de ingeniería o Eficiencia Energética para ponerla en práctica.

En la Guía, al inicio de cada punto son planteados los objetivos, con el fin de que el usuario sepa cual es su horizonte. En cada punto son definidos los conceptos básicos necesarios para la comprensión y aplicación de los temas tratados.

Estructura de la Guía

El siguiente diagrama muestra los principales temas que se abordarán en el desarrollo de la Guía y una breve descripción de los objetivos de estos.

gestión energética.

energética identificadas, en aquellas que son aplicables en el corto plazo y en el largo plazo. También conocerá las principales etapas de un programa de

Análisis de las instalaciones y de su uso

Objetivo:

Al término de esta sección será capaz de identificar el tipo de establecimiento educacional que habita, el tipo de jornada, la cantidad de alumnos y las horas de uso anuales de este. También será capaz de reconocer cada uno de los recintos del establecimiento, identificando donde están ubicadas las salas de clases, oficinas, bodegas, laboratorios etc.; la superficie de cada uno de estos y los sistemas energéticos existentes en ellos.

3.1 Conceptos básicos

Orientación en Planimetría: es la acción de ubicar los cuatro puntos cardinales (norte, sur, este y oeste) en un plano determinado. Generalmente en los planos es señalado sólo el norte, lo que permite que los otros puntos cardinales queden determinados en el plano.

Superficie útil: es el área limitada por la cara interior de los muros de un recinto (ver figura 3.1).

Lux [lx]: la cantidad de luz que llega a una superficie determinada (por ejemplo un escritorio), se mide en lux. Este indicador se utiliza para saber si la cantidad de luz es adecuada, y se mide utilizando un luxómetro.

Humedad relativa: es un indicador de la cantidad de vapor de agua contenida en el aire. El instrumento utilizado para medirla es el higrómetro. El rango mas adecuado para mantener condiciones ambientales agradables varía entre 40 y 60%.

Superficie útil= 10x4=40 (m²)

Largo= 10m

FIGURA 3.1 Ejemplo de cálculo de superficie útil.

3.2 Características generales

Es importante determinar las características generales del establecimiento en donde se está realizando el diagnóstico energético. A continuación se presenta un ejemplo de cómo organizar la información:

TABLA 3.1 Ejemplo de caracterización de un establecimiento

TIDO	OLUBO O O	TIPO JORNADA	MATRÍOLU A C	DÍAS	HORARIO		
TIPO	CURSOS	(COMPLETA O DOBLE)	MATRÍCULAS	SEMANALES	Mañana	Tarde	
Parvularia	Primer nivel de transición)	Doble	20	5	8:00-13:00	14:00-17:00	
	Segundo nivel de transición	Doble	50	5	8:00-13:00	14:00-17:00	
Básica	1	Completa	100	5	8:00-17:00		
	2	Completa	95	5	8:00-17:00		
	3	Completa	90	5	8:00-17:00		
	4	Completa	101	5	8:00-17:00		
	5	Completa	96	5	8:00-17:00		
	6	Completa	100	5	8:00-17:00		
	7	Completa	110	5	8:00-17:00		
	8	Completa	90	5	8:00-17:00		
	Total Matríc	culas	852				

3.3 Definición de zonas y usos de energía

3.3.1 Planos del establecimiento y sistemas energéticos

El primer paso para conocer sus recintos es obtener un plano general de éstos. Si no es posible, puede elaborar un esquema simple donde aparezcan los distintos recintos que conforman su establecimiento, por ejemplo: salas de clases, casinos, oficinas, biblioteca, bodegas, entre otros. El plano o esquema debe tener la información para cada uno de los pisos del establecimiento y debe incluir la orientación geográfica del establecimiento. La figura 3.2 muestra un ejemplo.

Es necesario estimar la superficie útil de los diversos recintos y los sistemas consumidores de energía asociados. Además se requiere indicar el tipo de energía que utilizan estos sistemas, tal como se presenta en la tabla 3.2.

FIGURA 3.2 Ejemplo de un esquema general.

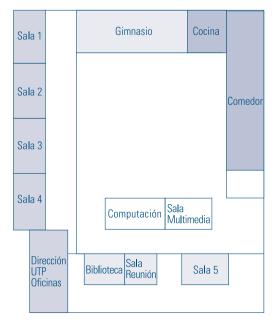


TABLA 3.2 Superficie útil, sistemas consumidores y tipo de energía

Recintos	Superficie Util m²	Iluminación	Calefacción	Equipos computacionales	Agua caliente sanitaria	Aire Acondicionado	Motores eléctricos
Sala 1	41	+					
Sala 2	41	+					
Sala 3	41	+					
Sala 4	50	+					
Sala 5	50	+					
Cocina	25	+	+		+ X		
Comedor	100	+	+				
Dirección	25	+	+ X	+		+	
Biblioteca	100	+	+ X	+		+	
Sala multimedia	50	+	+ X	+		+	
Sala de reuniones	35	+	+	+		+	
Superficie total	558						
		+=	Energía Eléctrica	; x= Energía Térmica			

3.4 Determinando el confort del establecimiento educacional

Se entiende por confort al conjunto de parámetros de un lugar determinado, que determinan el bienestar y comodidades de las personas.

Existen dos maneras de medir los parámetros de confort: una cualitativa y otra cuantitativa. La primera se realiza por medio de la percepción (por ejemplo, si en un determinado recinto la mayoría de los usuarias siente mucho frío en invierno o percibe el ambiente oscuro) y la segunda con mediciones de ciertos parámetros.

TABLA 3.3 Ejemplo de percepción de confort

CARACTERÍSTICA DEL RECINTO	CRITERIOS DE EVALUACIÓN				
lluminación	Baja (ambiente oscuro)	Adecuada (iluminación confortable para el usuario)	Alta (ambiente con iluminación excesiva o reflejos molestos)		
Temperatura	Baja (ambiente frío)	Adecuada (calefacción confortable para el usuario)	Alta (ambiente con calefacción excesiva)		
Humedad relativa	Baja (ambiente seco)	Adecuada (humedad confortable para el usuario)	Alta (ambiente muy húmedo)		

13

Tabla 3.4 Ejemplo de como determinar el confort

RECINTO	ILUMINACIÓN	CALEFACCIÓN	HUMEDAD RELATIVA
Sala 1	Adecuada	Baja	Adecuada
Sala 2	Adecuada	Baja	Adecuada
Sala 3	Adecuada	Baja	Adecuada
Sala 4	Adecuada	Baja	Adecuada
Sala 5	Adecuada	Baja	Adecuada
Cocina	Adecuada	Baja	Adecuada
Comedor	Adecuada	Baja	Adecuada
Dirección	Adecuada	Baja	Adecuada
Biblioteca	Adecuada	Baja	Adecuada
Sala multimedia	Adecuada	Baja	Adecuada
Sala de reuniones	Adecuada	Baja	Adecuada


En el caso de realizar mediciones, es recomendable utilizar los instrumentos mencionados en tabla 3.5 y comparar con rangos recomendados. Para mayor información consultar las normas respectivas.

Tabla 3.5 Parámetros de Medición de Confort

SISTEMA A MEDIR	INSTRUMENTO UTILIZADO PARA SU MEDICIÓN	RANGO ACEPTADO COMO CONFORTABLE*	FUENTE	
Iluminación	Luxómetro	500-700 lux	Norma N°4/2003, Instalaciones Eléctricas en Baja Tensión	
Tomporatura	Termómetro	23-25°C en verano	Reglamento de Instalaciones en los Edificios en Chile, Cámara Chilena de	
Temperatura	rermometro	20-22°C en invierno	Refrigeración y Climatización	
Humedad Relativa	Higrómetro	40 a 60%	Instalaciones en los Edificios en Chile, Cámara Chilena de Refrigeración y Climatización	

* los rangos aquí definidos son aplicable a las Salas de clases, Bibliotecas, Sala multimedia, entre otros.

Existen otros parámetros de confort que afectan las condiciones de bienestar, tales como niveles de ruido y ventilación, entre otros.

3.4.1 Horas de uso del establecimiento

Es importante definir las horas de uso de cada recinto del establecimiento, tal como muestra en la siguiente tabla.

TABLA 3.6 Ejemplo de estimación de horas anuales

RECINTO	HORAS EN LA MAÑANA	HORAS EN LA TARDE	DÍAS DE LA SEMANA	MESES DEL AÑO	HORAS ANUALES DE USO
Sala 1	5	5	5	10	2.000
Sala 2	5	5	5	10	2.000
Sala 3	5	5	5	10	2.000
Sala 4	5	5	5	10	2.000
Sala 5	5	5	5	10	2.000
Cocina	4	3	5	10	1.400
Comedor	2	2	5	10	800
Dirección	6	6	5	10	2.400
Biblioteca	6	6	5	10	2.400
Sala multimedia	2	2	5	10	800
Sala de reuniones	2	2	5	10	800

Conociendo las Características Constructivas

Objetivo:

Al término de esta sección será capaz de determinar algunas de las principales características de los materiales utilizados en la construcción de su establecimiento educacional, por ejemplo el tipo de ventanas, muros, pisos y techos. También se creará una idea general del estado de la aislación térmica del establecimiento.

4.1 Conceptos básicos

Reglamentación térmica: es un conjunto de normas que establecen requisitos de acondicionamiento térmico para edificaciones.

Envolvente: es el conjunto de muros exteriores, ventanas, pisos y techos que forman una edificación.

Aislación: son los materiales utilizados para evitar las pérdidas por transmisión de frío o calor.

Infiltración: corresponde al ingreso de aire exterior hacia el interior de un recinto.

Doble vidrio hermético: es una estructura de doble vidrio que contiene aire u otros gases en su interior. Este sistema ayuda a disminuir las pérdidas térmicas y la transmisión de ruido (ver figura 4.1).

Sombreamiento: es una extensión que proporciona sombra a los muros y ventanas exteriores (ver figura 4.2).

Cielo: es el elemento de una habitación que busca separar el techo del recinto (ver figura 4.2).

Muros exteriores: Corresponden a los muros que están en contacto directo con el exterior (ver figura 4.2).

Muros interiores: Corresponde a muros que dividen recintos entre sí, por ejemplo una sala de clases de una oficina (ver figura 4.2).

Zona térmica: corresponde a divisiones geográficas del territorio nacional, en base a los requerimientos térmicos necesarios para calefaccionar un recinto determinado. En Chile las zonas térmicas son clasificadas con números que van desde el 1 al 7 (ver figura 4.3).

Para determinar la zona térmica de diferentes localidades, se puede consultar el "Manual de Aplicaciones de la Reglamentación Térmica" (MART). Una copia de este se puede obtener en www.mart.cl.

FIGURA 4.1 Doble vidrio hermético o termopanel.

FIGURA 4.2 Partes de la envolvente.

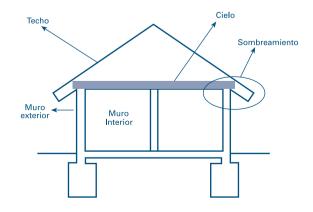
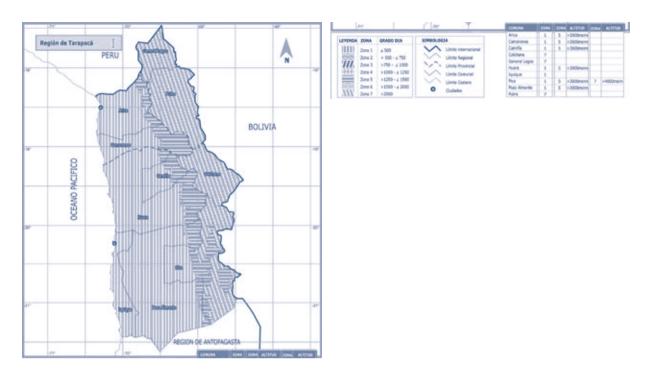



FIGURA 4.3 Ejemplo de zona térmica, Región de Tarapacá.

4.2 Identificando la envolvente

Es necesario caracterizar la envolvente de cada recinto del establecimiento, es decir, determinar el tipo de ventanas, muros, techumbre y el estado en que estos se encuentran. Todo esto con el objetivo de identificar opciones que conduzcan a utilizar la energía de manera eficiente.

Ventanas Exteriores

Son aquellas que están ubicadas en los muros exteriores

TABLA 4.1 Ejemplo de como caracterizar las ventanas exteriores.

RECINTO	SOMBREAMIENTO	TIPO VIDRIO	TIPO MARCO	ESTADO	NIVEL DE INFILTRACIONES	ORIENTACIÓN	SUPERFICIE m ²
Sala 1	SÍ	Simple	Madera	Bueno	Medio	Poniente	25
Sala 2	SÍ	Simple	Madera	Regular	Medio	Poniente	25
Sala 3	SÍ	Simple	Madera	Malo	Medio	Poniente	25
Sala 4	SÍ	Simple	Madera	Regular	Medio	Poniente	30
Sala 5	SÍ	Simple	Madera	Regular	Medio	Poniente	30
Cocina	SÍ	Simple	Madera	Regular	Medio	Norte	15
Comedor	SÍ	Simple	Aluminio	Regular	Medio	Oriente	60
Dirección	SÍ	Simple	Aluminio	Regular	Medio	Oriente y poniente	30
Biblioteca	SÍ	Simple	Aluminio	Regular	Medio	Norte y sur	60
Sala multimedia	SÍ	Simple	Madera	Regular	Medio	Norte y sur	30
Sala de reuniones	SÍ	Simple	Madera	Regular	Medio	Norte y sur	21
Superficie total							351

Puertas Exteriores

Son aquellas que están ubicadas en los muros exteriores

TABLA 4.2 Ejemplo de como caracterizar las puertas exteriores.

RECINTO	MATERIAL	TIPO MARCO	ESTADO	FILTRACIONES	SUPERFICIE m ²
Sala 1	Madera	Madera	Bueno	SÍ	2
Sala 2	Madera	Madera	Regular	SÍ	2
Sala 3	Madera	Madera	Malo	SÍ	2
Sala 4	Madera	Madera	Regular	No	2
Sala 5	Madera	Madera	Regular	No	2
Cocina	Madera	Madera	Regular	No	2
Comedor	Madera	Madera	Regular	No	2
Dirección	Madera	Madera	Bueno	No	2
Biblioteca	Madera	Madera	Bueno	No	2
Sala multimedia	Madera	Madera	Bueno	No	2
Sala de reuniones	Madera	Madera	Bueno	No	2
Superficie total					22

Muros Exteriores

TABLA 4.3 Ejemplo de como caracterizar las muros exteriores.

RECINTO	TIPO MURO	AISLACIÓN (SI O NO)	FILTRACIÓN	TIPO AISLACIÓN	ESPESOR CM	SUPERFICIE m ²
Sala 1	Ladrillo	No	SÍ	No aplica	20	62
Sala 2	Ladrillo	No	SÍ	No aplica	20	62
Sala 3	Ladrillo	No	SÍ	No aplica	20	62
Sala 4	Ladrillo	No	No	No aplica	20	75
Sala 5	Ladrillo	No	No	No aplica	20	75
Cocina	Ladrillo	No	No	No aplica	20	38
Comedor	Ladrillo	No	No	No aplica	20	150
Dirección	Ladrillo	No	No	No aplica	20	38
Biblioteca	Ladrillo	No	No	No aplica	20	150
Sala multimedia	Ladrillo	No	No	No aplica	20	75
Sala de reuniones	Ladrillo	No	No	No aplica	20	53
Superficie total						837

Techumbre

TABLA 4.4 Ejemplo de como caracterizar las techumbres.

RECINTO	¿CON CIELO O SIN CIELLO?	MATERIAL TECHO	AISLACIÓN (SI O NO)	TIPO AISLACIÓN	SUPERFICIE m ²
Sala 1	Con cielo	Pizarreño	No	No aplica	49
Sala 2	Con cielo	Pizarreño	No	No aplica	49
Sala 3	Con cielo	Pizarreño	No	No aplica	49
Sala 4	Con cielo	Pizarreño	No	No aplica	60
Sala 5	Con cielo	Pizarreño	No	No aplica	60
Cocina	Con cielo	Pizarreño	No	No aplica	30
Comedor	Con cielo	Pizarreño	No	No aplica	120
Dirección	Con cielo	Pizarreño	No	No aplica	30
Biblioteca	Con cielo	Pizarreño	No	No aplica	120
Sala multimedia	Con cielo	Pizarreño	No	No aplica	60
Sala de reuniones	Sin cielo	Pizarreño	No	No aplica	42
Superficie total					670

4.3 Oportunidades de mejoras térmicas

Una mayor aislación térmica ayudará a reducir los costos asociados a calefacción, mejorara los niveles de confort, reducirá las contaminaciones atmosféricas y las emisiones de CO₂. Con una mayor aislación se podrían obtener recintos más herméticos, estos sin las medidas de ventilación adecuadas pueden convertirse en ambientes contaminados, por ejemplo dentro de las salas de clases, es por ello que se recomienda asesorarse por un especialista.

1. Puertas y Ventanas

Si existen ventanas y puertas en mal estado o con mucha infiltración de aire, se recomienda repararlas para evitar las pérdidas térmicas (ver figura 4.4).

2. Muros Exteriores

Si existen muros en mal estado o con mucha filtración de aire, se recomienda repararlos para evitar las pérdidas térmicas. Si no poseen aislación térmica, verifique con un constructor civil o arquitecto, la posibilidad de incorporarla (ver figura 4.5).

3. Techumbre

Si existen cielos o techumbres en mal estado o con mucha filtración de aire, se recomienda repararlos para evitar las pérdidas térmicas.

Si posee menos aislamiento que la sugerida por el manual de reglamentación térmica (ver Tabla 4.5), agregue una mayor cantidad de aislación para cumplir con la norma. La siguiente tabla muestra los espesores normados para la aislación de techumbres.

TABLA 4.5 Espesores normados para la aislación en techumbres.

ZONA TÉRMICA	POLIESTIRENO EXPANDIDO (PLUMAVIT) mm	LANA DE VIDRIO mm	POLIURETANO RÍGIDO mm
1	40	40	24
2	60	60	37
3	80	80	49
4	100	100	61
5	120	120	73
6	140	140	86
7	160	160	98

Fuente: MART

FIGURA 4.4 Opción de Eficiencia Energética para ventanas.

FIGURA 4.5 Opción de Eficiencia Energética para muros.

Análisis de las facturas de energía y agua

Objetivo:

Al final de esta sección será capaz de interpretar cuentas o facturas de electricidad, gas licuado, gas natural y agua. Podrá establecer la relación entre el consumo de energía y su costo asociado. También, será capaz de construir la matriz energética de su establecimiento llevando a unidades físicas comunes los diversos consumos de energía.

5.1 Conociendo las facturas de electricidad

5.1.1 Conceptos básicos

Energía activa: es aquella que puede ser transformada en otro tipo de energía, como térmica o mecánica. La unidad de medida utilizada en la factura de electricidad es kilowatt-hora (kWh)

Energía reactiva: es aquella que no puede ser transformada en otro tipo de energía. Esta es necesaria para el funcionamiento de motores eléctricos y trasformadores. Se mide kilovolt-Amperes reactivos (kVAr)

Demanda: para efectos tarifarios, corresponde a la potencia promedio en un período de tiempo de 15 minutos. La unidad de medida usada para su cobro es el kilowatt (kW).

Opciones tarifarias: son los diversos modos con los que las compañías aplican los cobros de energía y demanda. Existen varios tipos de tarifas reguladas en Alta Tensión (AT, voltajes superiores a 400V) y Baja Tensión (BT, voltajes inferiores a 400V). Los tipos de tarifas existentes y sus cargos asociados aparecen en la tabla 5.1.

TABLA 5.1 Opciones tarifarias clientes regulados.

OPCIONES TARIFARIAS	CARGOS ASOCIADOS
BT1	Cargo por energía base Cargo Fijo.
BT2 y AT2	Cargo Fijo Cargo por demanda máxima contratada Cargo por energía base
BT3 y AT3	Cargo Fijo Cargo por demanda máxima leída Cargo por energía base
BT4.3 y AT4.3	Cargo Fijo Cargo por demanda leída en horas punta Cargo por demanda leída fuera de punta Cargo por energía base

Horas punta: son los períodos de mayor requerimiento de energía eléctrica y donde los precios por concepto de demanda son mayores. La tabla 5.2 muestra el período de horas punta para las diferentes zonas del país.

Límite de invierno: es una medida implementada para regular el aumento del consumo de electricidad que ocurre en los meses de invierno, que solo es aplicado a clientes con tarifa tipo BT1. Para mayor información visite http://www.sec.cl/sitioweb/electricidad_preguntas/tarifas.

TABLA 5.2 Horas punta por regiones.

SISTEMA	REGIÓN	MESES QUE CONTIENEN HORAS PUNTA (MESES DE INVIERNO)	HORAS PUNTA
Interconectado Norte Grande	I, II y XV abril a septiembre incluso		18 a 23 hrs.
		enero, febrero, marzo, abril, octubre, noviembre y diciembre	19 a 24 hrs.
Interconectado Central	III A X	abril a septiembre incluso	18 a 23 hrs.
Eléctrico Aysén y Magallanes	XI, XII y XIV	abril a septiembre incluso	17 a 22 hrs.

5.1.2 Analizando la factura de electricidad

Es importante comprender la información contenida en la factura de electricidad, debido a que existen variados tipos de tarifas y diversos cargos asociados. A continuación, se presenta una tarifa de electricidad típica y una tabla con las definiciones de los principales conceptos de la factura.

FIGURA 5.1 Ejemplo de factura de electricidad.

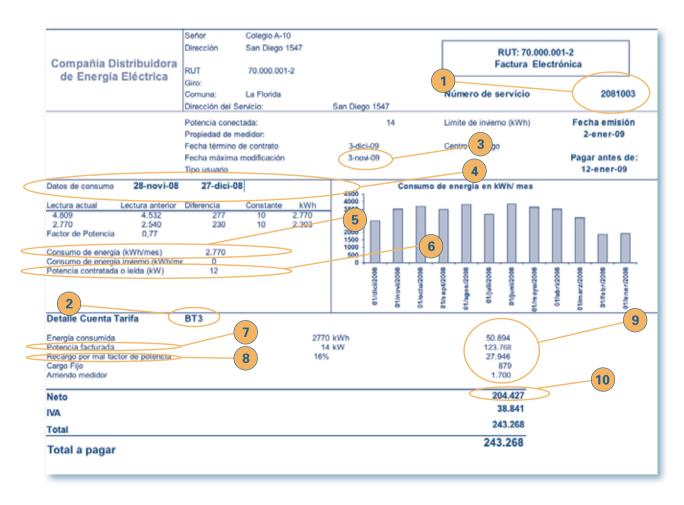
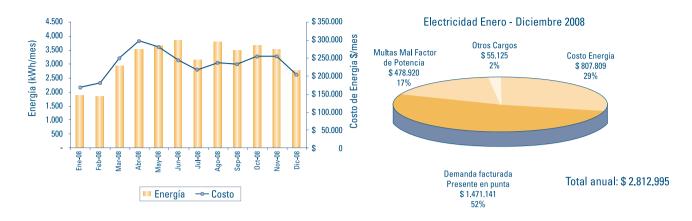


TABLA 5.3 Conceptos de las facturas eléctricas.

NÚMERO	INFORMACIÓN	DESCRIPCIÓN
1	Número de servicio	También llamado número de cliente, sirve para identificar al consumidor en la base de datos de la compañía distribuidora. Con este es posible obtener la información de las facturas eléctricas históricas en la compañía distribuidora.
2	Tarifa	Corresponde a la opción tarifaria contratada, puede ser AT2; AT3; AT4.1; AT4.2; AT4.3 (opciones en alta tensión) o BT1 BT2; BT3; BT4.1; BT4.2; BT4.3 (opciones en baja tensión)
3	Fecha límite modificación de contrato	Corresponde a la fecha límite para cambiar la opción tarifaria acordada con la compañía distribuidora.
4	Periodo de lectura	Representa el intervalo de tiempo (aproximadamente un mes) en el que se ha registrado el consumo de energía y demandas (potencia) máximas.
5	Consumo de energía activa	Es el registro de energía activa obtenido en el periodo de lectura.
6	Demanda Contratada o leída	Corresponde a la potencia contratada o leída. Es contratada si se tiene una tarifa del tipo BT2 o AT2 y es leída si se trata de una tarifa BT3 AT3.
7	Demanda facturada	Corresponde a la demanda facturada en el mes.
8	Factor de potencia	Relación que da cuenta del consumo de energía activa y reactiva de una instalación. Si este es inferior a 0,93 la compañía distribuidora procederá a multar la instalación.
9	Cargos	Corresponde a los costos asociados al consumo de energía, demanda, cargo fijo y, si corresponde, multas por mal factor de potencia.
10	Neto	Corresponde a la suma de todos los cargos asociados.


Observación. El nombre que se le da a los diversos cargos asociados a las facturas eléctricas puede cambiar dependiendo de la compañía distribuidora. Si en su factura el nombre de los cargos no coincide con los de esta tabla, llame a la compañía y pídale ayuda a algún ejecutivo.

Es recomendable resumir la información a través del uso de planilla y gráficos, que permitan un mejor análisis, tal como se muestra a continuación.

TABLA 5.4 Ejemplo de un modelo para organizar la factura eléctrica.

PERÍODO	LECTURA	ENERGÍA ACTIVA	DEMANDA LEIDA PRESENTE EN PUNTA	DEMANDA FACTURADA PRESENTE EN PUNTA	COSTO ENERGÍA	DEMANDA FACTURADA PRESENTE EN PUNTA	MULTAS MAL FACTOR DE POTENCIA	NETO
	1	5	6	7		9		10
Desde	Hasta	kWh/mes	kW	kW	\$/mes	\$/mes	\$/mes	\$/mes
28-Nov-08	27-Dic-08	2.770	12,0	14,0	\$ 50.894	\$ 123.768	\$ 27.946	\$ 204.427
29-Oct-08	28-Nov-08	3.527	13,0	14,0	\$ 83.565	\$ 124.027	\$ 45.670	\$ 255.070
27-Sep-08	29-Oct-08	3.683	13,0	14,0	\$ 86.518	\$ 123.718	\$ 42.047	\$ 254.598
29-Ago-08	27-Sep-08	3.486	14,0	14,0	\$ 73.317	\$ 123.008	\$ 35.159	\$ 232.261
27-Jul-08	29-Ago-08	3.803	13,0	14,0	\$ 81.948	\$ 121.553	\$ 30.525	\$ 236.388
27-Jun-08	27-Jul-08	3.156	13,0	14,0	\$ 52.211	\$ 120.509	\$ 35.544	\$ 214.011
29-May-08	27-Jun-08	3.846	14,0	14,0	\$ 75.716	\$ 119.864	\$ 44.938	\$ 242.255
28-Abr-08	28-May-08	3.653	13,0	14,0	\$ 109.088	\$ 120.859	\$ 48.289	\$ 281.260
27-Mar-08	28-Abr-08	3.538	13,0	14,0	\$ 111.033	\$ 122.627	\$ 51.405	\$ 296.130
27-Feb-08	27-Mar-08	2.943	11,0	14,0	\$ 73.475	\$ 122.775	\$ 41.212	\$ 249.254
29-Ene-08	27-Feb-08	1.845	2,0	14,0	\$ 3.923	\$ 124.064	\$ 40.953	\$ 179.787
27-Dic-08	29-Ene-08	1.886	1,0	14,0	\$ 6.121	\$ 124.369	\$ 35.232	\$ 167.554
Tota	ales	38.136			\$ 807.809	\$ 1.471.141	\$ 478.920	\$ 2.812.995

FIGURA 5.2 Estadística anual y mensual de las facturas de electricidad.

Su establecimiento puede recibir mensualmente más de una factura de electricidad, esto se debe a que en su establecimiento existe más de un empalme. Si este es el caso, es recomendable realizar el análisis de las facturas para todos los empalmes.

5.2 Conociendo las facturas de combustible

5.2.1 Conceptos básicos

Poder calorífico: cantidad de energía que posee un combustible. Se mide en unidades, tales como kCal/m3 (gases), kCal/lt (líquidos) y kCal/kg (sólidos).

Gas natural: Es un combustible fósil formado por hidrocarburos livianos, principalmente por metano (CH4). En estado natural no tiene color, sabor, ni olor, por lo que se le agrega metil mercaptano para detectar fugas.

Gas licuado: Es una mezcla de Hidrocarburos formada fundamentalmente por Propano y Butano, que se obtiene de la refinación del petróleo y gas natural. En estado natural no tiene color, sabor, ni olor, por lo que se le agrega metil mercaptano para detectar fugas.

5.2.2 Analizando cuentas de combustible

5.2.2.1 Gas Natural

La tabla 5.6 muestra un ejemplo de cómo organizar la información contenida en una factura de gas natural. El procedimiento a utilizar, es similar al de la factura de electricidad.

FIGURA 5.3 Ejemplo de factura típica de gas natural.

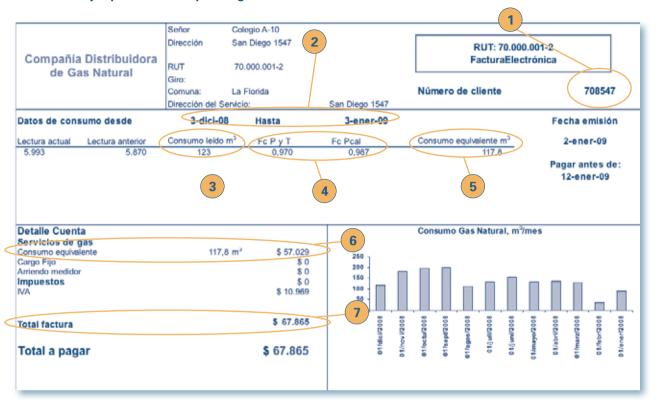
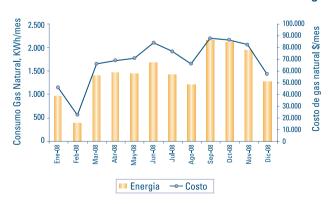


TABLA 5.5 Conceptos de las facturas de gas natural

NÚMERO	INFORMACIÓN	DESCRIPCIÓN
1	Número de Cliente	Sirve para identificar al consumidor en la base de datos de la compañía distribuidora. Con este es posible obtener la información de las facturas.
2	Periodo de lectura	Representa el intervalo de tiempo (aproximadamente un mes) en el que se ha registrado el consumo de gas.
3	Consumo leído	Corresponde al registro del consumo de gas en un mes, se mide en m ³
4	Factores de corrección	Los factores de corrección corrigen el volumen registrado en el medidor a las condiciones estándar de presión, temperatura y poder calorífico.
5	Consumo equivalente	Es el que resulta al aplicar los factores de corrección al consumo leído, su unidad de medida es m³.
6	Consumo equivalente facturado	Corresponde al producto del consumo equivalente y el precio por cada m³ de gas natural
7	Total factura	Corresponde a la suma de todos los cargos asociados a la factura de gas natural antes de aplicar el IVA.

Se recomienda ordenar y analizar la información en una forma similar a la presentada en la tabla 5.6, esto ayudará a procesar la información de una manera más útil.

TABLA 5.6 Ejemplo de como organizar las facturas de gas natural.

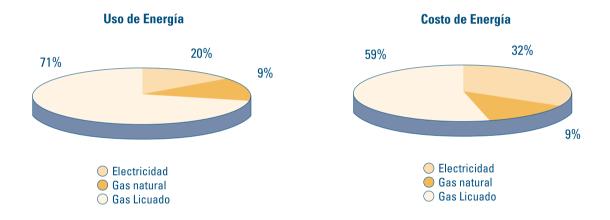

PERIODO D	PERIODO DE LECTURA		CONSUMO	TOTAL NETO
	2			6
Desde	Hasta	m³/mes	kWh/mes	\$/mes
03-Dic-08	03-Ene-09	117,8	117,8x10,81=1.275	57.029
02-Nov-08	03-Dic-08	180,0	1.947	82.180
02-Oct-08	02-Nov-08	196,4	2.124	86.499
29-Ago-07	02-Oct-08	199,1	2.154	87.818
01-Ago-08	02-Sept-08	110,5	1.195	65.837
02-Jul-08	01-Ago-08	131,8	1.426	76.301
03-Jun-08	02-Jul-08	154,8	1.674	84.077
02-May-08	03-Jun-08	133,2	1.440	70.379
02-Abr-08	02-May-08	135,4	1.465	69.089
03-Mar-08	02-Abr-08	129,9	1.405	66.296
01-Feb-08	03-Mar-08	36,3	393	22.574
03-Ene-08	01-Feb-08	89,1	964	45.127
Tot	ales	1.614,9	17.462	813.206

Para calcular la energía proporcionada por el gas natural en kWh, se multiplicaron los m³ de gas por el factor 10,81 (kWh/m³). En los casos de gas licuado, se puede seguir un procedimiento similar, los valores de conversión son diferentes:

Para gas licuado a granel usar: 7,74 kWh/litro

Para gas licuado en balones usar: 14,13 kWh/kg

FIGURA 5.4 Distribución mensual del consumo de energía.


5.2.3 Matriz de consumos energéticos

Una vez que hemos determinado el consumo anual de electricidad y combustibles en unidades físicas comunes (por ejemplo kWh), es posible determinar la matriz de consumos energéticos. Para esto se recomienda utilizar una tabla y gráficos como los siguientes:

TABLA 5.7 Resumen anual del consumo de energía.

FUENTE DE ENERGÍA	CANTIDAD	UNIDAD	ENERGÍA kWh/año	COSTO \$/AÑO
Electricidad	38.136	kWh	38.136	2.812.995
Gas Natural	1.615	m³	17.462	813.206
Gas Licuado	17.161	litros	132.823	5.107.620
Total			188.421	8.733.821

FIGURA 5.5 Ejemplo de Gráficos del consumo anual de energía

En la figura anterior es posible observar que el uso de energía eléctrica es sólo el 20% del consumo total, pero su costo corresponde al 32%.

5.3 Conociendo la factura de agua

Uno de los consumos más importantes en los establecimientos educacionales es el agua potable. A continuación se muestra un modo de organizar la información contenida en la factura de agua.

FIGURA 5.6 Ejemplo de una factura de agua potable.

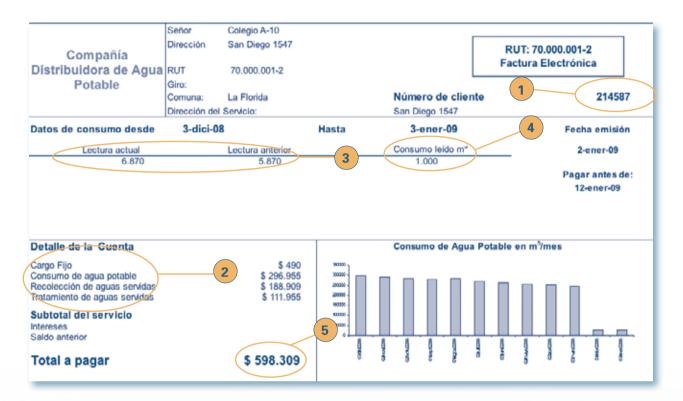
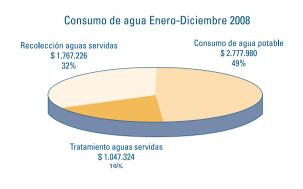
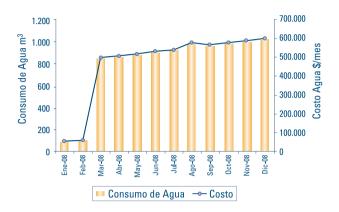


TABLA 5.8 Conceptos de las facturas de agua potable

NÚMERO	INFORMACIÓN	DESCRIPCIÓN
1	Número de Cliente	Sirve para identificar al consumidor en la base de datos de la compañía. Con este es posible obtener la información de las facturas.
3	Periodo de lectura	Representa el intervalo de tiempo (aproximadamente un mes) en el que se ha registrado el consumo de agua.
	Consumo de agua potable	Corresponde al costo mensual de los metros cúbicos de agua consumidos.
2	Tratamiento aguas servidas	Corresponde al costo mensual asociado al proceso de descontaminar las aguas servidas producidas por el usuario. Este es aplicado a los metros cúbicos de agua consumidos
	Recolección aguas servidas	Corresponde al costo asociado al proceso de recolectar y llevar las aguas servidas a las plantas procesadoras. Este es aplicado a los metros cúbicos de agua consumidos.
4	Consumo leído	Corresponde al consumo de agua mensual en metros cúbicos.
5	Total a pagar	Corresponde a la suma de todos los costos asociados: cargo fijo, consumo de agua potable, tratamiento aguas servidas, recolección aguas servidas y otros cargos como saldo anterior si existiera, intereses, etc.


Al igual que el caso de las facturas eléctricas, se recomienda ordenar y analizar la información en una tabla similar a la presentada a continuación. Esto ayudará a procesar la información de una manera más útil.


TABLA 5.9 Ejemplo de como organizar la información del agua potable.

PERIODO DE LECTURA		CONSUMO DE AGUA POTABLE	CONSUMO DE AGUA POTABLE	TRATAMIENTO AGUAS SERVIDAS	RECOLECCIÓN AGUAS SERVIDAS	TOTAL A PAGAR
3		4	2			5
Desde	Hasta	m³	\$/mes	\$/mes	\$/mes	\$/mes
03-Dic-08	03-Ene-09	1.000	296.955	111.955	188.909	598.309
02-Nov-08	03-Dic-08	990	291.045	109.727	185.150	585.922
02-Oct-08	02-Nov-08	980	285.195	107.521	181.428	574.145
29-Ago-07	02-Oct-08	970	279.405	105.338	177.745	562.487
01-Ago-08	02-Sept-08	1.000	285.076	107.476	181.353	573.905
02-Jul-08	01-Ago-08	950	268.001	101.039	170.490	539.531
03-Jun-08	02-Jul-08	940	262.389	98.923	166.920	528.232
02-May-08	03-Jun-08	930	256.836	96.829	163.387	517.053
02-Abr-08	02-May-08	920	251.342	94.758	159.893	505.993
03-Mar-08	02-Abr-08	910	245.908	92.710	156.436	495.053
01-Feb-08	03-Mar-08	110	29.399	11.084	18.702	59.184
03-Ene-08	01-Feb-08	100	26.429	9.964	16.813	53.206
Totales		9.800	\$ 2.777.980	\$ 1.047.324	\$ 1.767.226	\$ 5.592.529

Al igual que en las facturas de electricidad es recomendable realizar gráficos como los que aparecen a continuación:

FIGURA 5.7 Resumen consumo de agua y alcantarillado

5.4 Índices de consumo y emisiones de dióxido de carbono (CO2).

5.4.1 Índices energéticos y de agua

Son indicadores de la cantidad de energía o agua utilizada por una variable definida (cantidad de alumnos o superficie útil para el caso de los establecimientos) en un periodo de tiempo determinado. A continuación se muestra el modo de calcular los índices energéticos y de agua.

TABLA 5.10 Ejemplo de cálculo de índices.

ÍNDICE	FORMULA	EJEMPLO DE CÁLCULO		
Electricidad	Energía anual	38.136 = 68,34 [kWh/m²/año]		
Liectiicidad	Superficie útil	558 = 68,34 [KVVII/III-/allo]		
Gas Natural	Energía anual	17.462		
	Superficie útil	——————————————————————————————————————		
Gas Licuado	Energía anual	132.823		
	Superficie útil	= 238,03 [kWh/m²/año] 558		
Agua	Consumo	9.800 x 1.000		
	Nº alumnos x Nºdías	= 44,2 [litros/alumno/día] 852 x 260		

Todos los índices han sido calculados con la información obtenida en el desarrollo de la Guía (ver punto 5.2.3.)

5.4.2 Emisiones de CO₂

Corresponde a la cantidad de dióxido de carbono que es liberada al ambiente por la combustión del gas natural, gas licuado y la generación de energía eléctrica.

La tabla siguiente muestra los valores de las emisiones correspondientes al establecimiento educacional utilizado en el desarrollo de esta guía.

TABLA 5.11 Ejemplo de cálculo de emisiones de CO₂

TIPO	ENERGÍA kWh/año	FACTOR kg CO₂/kWh	EMISIONES CO₂ TON/AÑO
Electricidad	38.136	0,6	$(38.136 \times 0.6)/1.000 = 22.8$
Gas Natural	17.462	0,21	$(17.462 \times 0.21)/1.000 = 3,7$
Gas Licuado	132.823	0,23	(132.823 × 0.23)/1.000 = 30,5
Totales	188.421		57.0

Para realizar los cálculos correspondientes a su establecimiento educacional, puede utilizar los factores que aparecen en la tabla anterior

Conociendo los Sistemas Consumidores de Energía Eléctrica

Objetivo:

Al final de esta sección será capaz de identificar y cuantificar los sistemas y/o equipos consumidores de energía utilizados en su establecimiento, por ejemplo: lluminación, computadores, calefacción, etc.También podrá realizar estimaciones del consumo de energía de cada uno de los sistemas.

6.1 Conociendo los Sistemas de Iluminación

6.1.1 Conceptos básicos

Lámpara: es un equipo emisor de luz, ejemplos de lámparas son las ampolletas y los tubos fluorescentes (ver figura 6.1).

Luminaria: son las estructuras que sostienen las lámparas (ver figura 6.1).

Lumen [Im]: es la cantidad de luz que es capaz de emitir una lámpara bajo condiciones determinadas.

Rendimiento luminoso (eficiencia): este representa la cantidad de luz que es capaz de entregar cada Watt de consumo.

FIGURA 6.1 Ejemplo de lámparas y luminarias.

Un error frecuente es pensar que a mayor cantidad de Watts (potencia) existe una mayor cantidad de luz. Un ejemplo que respalda esto son las lámparas fluorescentes compactas, que con una potencia cuatro veces menor que las incandescentes son capaces de entregar similar cantidad de luz.

6.1.2 Algunos tipos de lámparas y luminarias

La siguiente tabla muestra imágenes y características de algunos tipos de lámparas, que generalmente son utilizadas en los establecimientos.

TABLA 6.1 Tipos de lámparas

LÁMPARA	IMÁGENES DE LO	CARACTERÍSTICAS				
Incandescentes y halógenos (menos eficientes)	Incandescente R-80	Incandesce	ente PAR-38		Su rango de potencia varía entre 25 y 150 W. Son las lámparas que consumen una mayor cantidad de energía. La mayor parte de su energía es liberada en forma de calor	
	Incandescente común	Dicroico	Dicroico		Poseen menor rendimiento	
	Halógeno	Halógeno				
Lámparas fluorescentes compactas (mas eficientes)	Lámpara LFC tradicional	Lámpara Lf	FC tradicional		Su rango de potencia varía entre 7 y 23 W. Son las encargadas de remplazar a las incandescentes, La mayor cantidad de energía es trasformada en luz.	
	Imita forma de las incandescentes	Imita forma	Imita forma de las incandescentes		Poseen mayor rendimiento	
Tubos Fluorescentes (mas eficientes)	Tecnología T-10 (menor rendimiento)	Tecnología T-8 (aceptable rendimiento)			Su potencia varía entre 14 y 120 W Dentro de las lámparas son las más eficientes.	
	Tecnología T-5 (mejor rendimiento)	T-10	T-8	T-5	Su nombre proviene de la medida de su diámetro en octavos de pulgada, por ejemplo, T-10 quiere decir que tiene un diámetro de 10/8 de pulgada.	
	T-5	Menos eficiente	Eficiente	Más eficiente	Su longitud varía entre 0,5 m y 1,5 m	

TABLA 6.2 Tipos de luminarias.

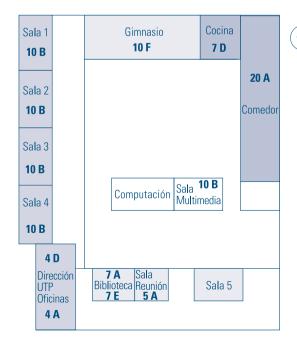
LUMINARIAS CON DIFUSOR Menos eficientes	LUMINARIAS CON REFLECTOR Eficiente		
En estas luminarias la luz no es utilizada de manera eficiente, ya que parte de ella se pierde en el proceso de difusión.	En estas luminarias la luz es utilizada de manera eficiente, ya que ellas cuentan con un reflector, el cual dirige los rayos de luz hacia el plano de trabajo.		

6.1.3 Identificando las luminarias y lámparas del establecimiento

Para organizar toda la información recolectada de las lámparas y luminarias elabore una tabla como la que aparece en el siguiente ejemplo.

TABLA 6.3 Ejemplo de como caracterizar cada luminaria

IMAGEN	DESCRIPCIÓN	POTENCIA DE LA LUMINARIA	NOMENCLATURA
Inserte una fotografía de cada Iuminaria identificada	Describa las luminarias, para ello identifique la cantidad de lámparas, potencia de cada lámpara y si estas tienen reflector o no	Para obtener la potencia de las luminarias, sólo se debe multiplicar la cantidad de lámparas por la potencia de cada una de ellas	A cada luminaria asígnele una letra (A, B, C, D, etc), ello simplificará su identificación cuando comience a contarlas.
	Luminaria con una tapa de plástico y tres tubos fluorescentes* de 40 W. * Los tubos fluorescentes Para su funcionamiento necesitan de un balasto, el cual incrementa en un 20% la potencia total de la luminaria	3x40x1,2=144 [W]	A
	Luminaria con reflector y tres tubos fluorescentes de 40W	2x40x1,2=96 [W]	В
	Ampolleta incandescente de 100 W	100 [W]	С


IMAGEN	DESCRIPCIÓN	POTENCIA DE LA LUMINARIA	NOMENCLATURA
	Lámpara fluorescente compacta de 20 W	20 [W]	D
	Ampolleta incandescente de 150 W tipo R-80	150 [W]	E
	Luminaria con lámpara halógena y reflector	500 [W]	F

6.1.4 Determinando las luminarias en cada recinto

Para determinar las luminarias existentes en cada recinto, es necesario un plano general del establecimiento (ver Figura 3.2) y haber caracterizado las luminarias.

Tome el plano y recorra todos los recintos del establecimiento, contando la cantidad de luminarias por tipo (A, B, C, etc.). Para almacenar la información recopilada utilice el plano, que además lo ayudará a saber exactamente en que zona están las luminarias contadas. La siguiente figura muestra un ejemplo de cómo realizar lo descrito anteriormente.

FIGURA 6.2 Ejemplo de como recopilar la información de las luminarias.

6.1.5 Ordenando la información recolectada

Se hace necesario sistematizar la información de las luminarias contenida en nuestro plano general (ver Figura 6.2), para esto se recomienda realizar una tabla como la que aparece a continuación.

TABLA 6.4 Ejemplo de como ordenar la información recolectada.

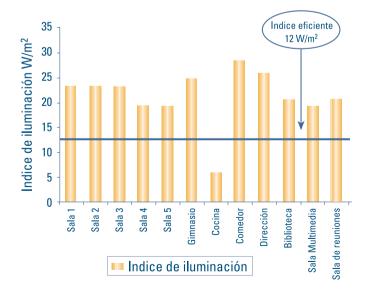
RECINTO	TIPO DE LUMINARIAS	CANTIDAD	POTENCIA LUMINARIA* [W]	POTENCIA TOTAL [W]	POTENCIA TOTAL** [kW]
Sala 1	В	10	96	10x69=960	(10×96)/1.000=0,96
Sala 2	В	10	96	960	0,96
Sala 3	В	10	96	960	0,96
Sala 4	В	10	96	960	0,96
Sala 5	В	10	96	960	0,96
Gimnasio	F	10	500	5.000	5
Cocina	D	7	20	140	0,14
Comedor	А	20	144	2.880	2,88
Dirección	D	4	20	80	0,08
Dirección	А	4	144	576	0,57
Biblioteca	А	7	144	1.008	1,01
Biblioteca	Е	7	150	1.050	1,05
Sala multimedia	В	10	96	960	0,96
Sala de reuniones	А	5	144	720	0,72
Totales		124		17.214	17,21

^{*} La potencia por luminaria fue obtenida en el punto 6.1.3

6.1.6 Estableciendo un índice de iluminación

Un índice utilizado en iluminación es el Watt por metro cuadrado, que consiste en dividir la potencia instalada de los sistemas de iluminación, por la superficie que iluminan. Para la mayoría de los recintos de un establecimiento educacional un buen índice de eficiencia para salas de clases es de 12 W/m².

^{**} La Potencia Total considera todas las luminarias identificadas en cada recinto.


TABLA 6.5 Ejemplo tabla modelo para elaborar un índice de iluminación.

RECINTO	SUPERFICIE [m²]	TIPO DE LUMINARIAS	POTENCIA TOTAL [W]	POTENCIA POR RECINTO [W]	W/m²
Sala 1	41	В	960	960	960/41=23,4
Sala 2	41	В	960	960	23,4
Sala 3	41	В	960	960	23,4
Sala 4	50	В	960	960	19,2
Sala 5	50	В	960	960	19,2
Gimnasio	200	F	5.000	5000	25,0
Cocina	25	D	140	140	5,6
Comedor	100	Α	2.880	2880	28,8
Dirección	25	D	0,08	0.08+0,546=0,656	26,2
Dirección	25	А	0,576	0.06+0,540=0,656	20,2
Biblioteca	100	А	1,008	1,008+1.05=2,058	20,6
Dibiloteca	100	Е	1,05	1,000+1.05=2,058	20,0
Sala multimedia	50	В	960	960	19,2
Sala de reuniones	35	А	720	720	20,6

Como se puede ver en la tabla anterior, para obtener el índice de iluminación en el recinto Dirección, fue necesario sumar la potencia total de las luminarias del tipo D y A, lo mismo se debió hacer para la zona de biblioteca, pero con las luminarias del tipo A y E. Si no se hubiese realizado lo anterior hubiésemos obtenido índices erróneos.

Como una herramienta de ayuda es recomendable graficar el índice obtenido.

FIGURA 6.3 Ejemplo de índice de iluminación.

6.1.7 Estimando el consumo de energía

Hasta ahora sólo se ha determinado la potencia total de los sistemas de iluminación. El siguiente paso es estimar el consumo de energía eléctrica de estos sistemas. Para ello es recomendable organizar la información como en la tabla 6.6, que además permitirá ordenar los cálculos realizados.

TABLA 6.6 Ejemplo de como calcular el consumo de energía anual.

ZONA	TIPO DE LUMINARIAS	CANTIDAD	POTENCIA LUMINARIA [W]	POTENCIA TOTAL [kW]	HORAS ANUALES DE USO	ENERGÍA ANUAL [kWh/AÑO]
Sala 1	В	10	96	0,96	2.000	0,96X2.000=1.920
Sala 2	В	10	96	0,96	2.000	1.920
Sala 3	В	10	96	0,96	2.000	1.920
Sala 4	В	10	96	0,96	2.000	1.920
Sala 5	В	10	96	0,96	2.000	1.920
Gimnasio	F	10	500	5	1.500	7.500
Cocina	D	7	20	0,14	1.400	196
Comedor	А	20	144	2,88	800	2.304
Dirección	D	4	20	0,08	2.400	192
Dirección	А	4	144	0,58	2.400	1.382
Biblioteca	А	7	144	1,01	2.400	2.419
Biblioteca	Е	7	150	1,05	2.400	2.520
Sala multimedia	В	10	96	0,96	800	768
Sala de reuniones	А	5	144	0,72	800	576
Totales		124		17,21		27.457

6.1.8 Opciones de Eficiencia Energética en los Sistemas de iluminación

En esta etapa se mostrarán alternativas de eficiencia energética para los diversos sistemas de iluminación, que fueron identificados en el establecimiento educacional.

La tabla 6.7 muestra las luminarias actuales y las alternativas de eficiencia energética propuestas, para cada una de estas.

TABLA 6.7 Alternativas de Eficiencia energética.

LUMINARIAS	S ACTUALES	LUMINARIAS PROPUESTAS		
Imagen	Potencia de la luminaria	Imagen	Potencia de la luminaria	
	144 [W]	Luminaria con reflector, dos tubos fluorescentes de tipo T-5 de 28 W y balasto electrónico	61 [W]	
	96 [W]	Este tipo de lámpara ya es efici cambio	ente, por esto no se propondrá alguno	
	100 [VV]	Lámpara de ahorro de energía.	20 [W]	
4=	20 [W]	Este tipo de lámpara ya es efici cambio		
	150 [W]	Lámpara fluorescente compacta que imita la forma de su equivalente en incandescente	23 [W]	
Lámpara halógena	500 [W]	Haluro metálico que imita la forma de una lámpara halógena	150 [W]	

En la tabla anterior se puede observar que cuatro de los seis tipos de luminarias identificadas, tienen opciones de eficiencia energética.

En Chile existe el etiquetado de eficiencia energética: que es una medida que facilita la compresión del consumo y eficiencia de los artefactos. En iluminación, las lámparas son clasificadas desde la letra A (más eficientes) hasta la G (menos eficientes). Para mayor información sobre el etiquetado visite www.ppee.cl.

6.1.8.1 Estimación de los ahorros de energía

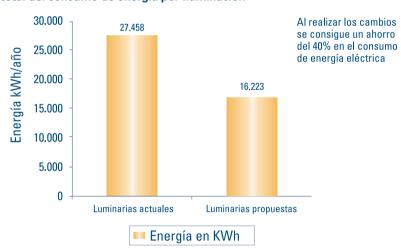

Para estimar los ahorros de energía es necesario calcular el consumo que tendrían los sistemas de iluminación, si se implementaran las opciones de eficiencia energética propuestas en el punto 6.1.8 (ver Tabla 6.7). Para ello es recomendable elaborar una tabla como la que aparece a continuación, que además permitirá ordenar los cálculos realizados.

TABLA 6.8 Ahorros de energía en los sistemas de iluminación

RECINTOS	ENERGÍA ANUAL LUMINARIAS ANTIGUAS [kWh/año]	ENERGÍA ANUAL LUMINARIAS PROPUESTAS [kWh/año]	AHORRO ANUAL DE ENERGÍA [kWh/año]
Gimnasio	7.500	2.250	7.500,0-2.2250=5.250,0
Comedor	2.304	976	1.328
Dirección	1.382	585	796
Biblioteca	2.419	1.024	1.394
Biblioteca	2.520	386	2.133
Sala de reuniones	576	244	332
Totales	16.701	5.466	11.234

Para el cálculo del consumo de energía anual de las luminarias propuestas, se ha considerado que la cantidad de luminarias no cambia y tampoco lo hacen las horas de uso. La siguiente figura muestra de modo gráfico los ahorros obtenidos.

FIGURA 6.4 Ahorro total del consumo de energía por iluminación

6.1.8.2 Ejemplo de cómo realizar un análisis económico simple

Para la realización del ejemplo, consideremos sólo el cambio realizado en el Gimnasio de nuestro establecimiento educacional (ver punto 6.1.8.1), en este se consideraba cambiar 10 lámparas halógenas de 500 W por 10 lámparas de haluro metal de 150W. Las horas de uso de las lámparas son 1.500 anuales.

TABLA 6.9 Ejemplo de análisis económico simple

		OBSERVACIONES
Inversión [\$]	300.000	En la inversión se debe considerar el costo de las lámparas y el costo de su instalación.
Ahorro de energía [kWh/ año]	5.250	Este ahorro fue obtenido en el punto 6.1.8.1
Ahorro de costos asociados [\$]	367.500	Para obtener este ahorro se debe multiplicar el ahorro de energía [kWh/año] por el costo unitario de la energía, este aparece en la factura eléctrica. Para este ejemplo se ha considerado que el precio de la energía es de 70 [\$/kWh].
Retorno de la inversión (años)	0,8	Para obtener el retorno del capital, se debe dividir el la inversión por el ahorro de costos asociados

6.2 Conociendo los Equipos Computacionales

6.2.1 Conceptos básicos de los equipos computacionales

Monitor (pantalla): Es la parte del computador en donde se proyectan las imágenes, que nos permiten interactuar con este. Existen dos tipos: los con tubos de rayos catódicos (CRT, por sus siglas en inglés), los de pantalla de cristal líquido (LCD, por sus siglas en inglés).

Unidad de proceso central (CPU): parte principal del computador, donde se almacena y procesa la información.

6.2.2 Conociendo los tipos de computadores

La siguiente tabla muestra una descripción de los computadores más comunes.

TABLA 6.10 Tipos de Computadores

IMAGEN REFERENCIAL	CONSUMO *	OBSERVACIONES
Computador con pantalla CRT.	140 W	La pantalla de este tipo de computadores consume aprox. 60 W y su CPU 90 W
Computador con pantalla LCD	105 W	La pantalla de este tipo de computadores consumo aproximadamente15 W y su CPU 90 W
Notebook (laptop)	22 W	

^{*} El consumo total de los computadores varía según su antigüedad, la capacidad del procesador, el tipo y tamaño de la pantalla. Sin embargo, los consumos descritos en esta tabla son suficientes para realizar estimación del consumo de energía

6.2.3 Estimando el consumo de energía

Antes de determinar el consumo de energía anual del los equipos computacionales es necesario determinar:

- 1. La cantidad y tipo (notebook y PC con monitor LCD o CRT) de computadores por cada zona
- 2. El tiempo de funcionamiento de los equipos

La siguiente tabla muestra una manera de ordenar la información obtenida de los equipos computacionales y como estimar el consumo de energía anual.

TABLA 6.11 Ejemplo de estimación del consumo de energía

RECINTO	TIPO DE COMPUTADOR	CANTIDAD	POTENCIA COMPUTADOR [W]	POTENCIA TOTAL [kW]	HORAS ANUALES DE USO	ENERGÍA ANUAL [kWh/ AÑO]
Dirección	Notebook	1	22	0,02	770	0,022x770=16,94
Biblioteca	PC (LCD)	10	105	1,05	700	735
Sala multimedia	PC (CRT)	50	140	7	700	4.900
Sala de reuniones	PC (LCD)	1	105	0,11	154	16
Totales		62		8,18		5.668

6.2.4 Opciones de Eficiencia Energética en los equipos computacionales

Inactividad: corresponde al período de tiempo en el cual el computador o monitor no recibe ninguna señal de entrada de activación. En el computador estas señales están dadas por dispositivo periféricos de entrada, por ejemplo, teclado, movimientos del mouse, etc.

Modo Sleep (dormir): en la práctica el computador sigue encendido consumiendo menos energía y con el monitor en negro. Se desactiva este modo cuando recibe una señal del mouse o del teclado.

Modo Standby (apagado): en la práctica el computador no está apagado, en este modo consume muy poca energía.

Para saber como activar estos modos de ahorros de energía, visite el sitio WEB http://www.ahorraahora.cl/consejos/modo-de-ahorro-de-energia-en-computadores/ y siga las instrucciones que ahí aparecen o solicite la ayuda del encargado de informática.

6.3 Otros equipos

6.3.1 Identificando otros equipos consumidores

Para ordenar la información recopilada de los otros equipos consumidores, se recomienda elaborar una tabla como la del siguiente ejemplo.

TABLA 6.12 Ejemplo de como ordenar la información de otros equipos

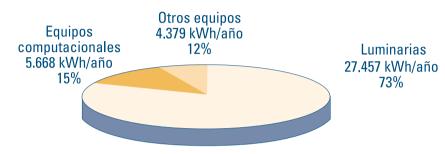
EQUIPO	POTENCIA UNITARIA* [W]	CANTIDAD	POTENCIA TOTAL [kW]
Horno de microondas	970	2	970×2/1000=1,94
Refrigerador	171	3	0,51
Televisor	978	2	1,96
Calefactor eléctrico	1.200	4	4,80
Hervidores de agua	2.100	3	6,30
DVD	13	2	0,03
Total			15,54

^{*}Este dato aparece en etiquetas adheridas en el equipo, sino aparece puede utilizar los datos de potencia entregados en esta tabla.

6.3.2 Estimando el consumo de energía

Hasta ahora se ha determinado el consumo de energía eléctrica de los sistemas de iluminación y de los equipos computacionales. Falta determinar el consumo de energía de los otros equipos. La siguiente tabla muestra un ejemplo de como realizar esto último.

TABLA 6.13 Ejemplo de como determinar el consumo de energía de los otros equipos


EQUIPO	POTENCIA UNITARIA* [W]	CANTIDAD	POTENCIA TOTAL [kW]	HORAS ANUALES DE USO	ENERGÍA [kWh/ AÑO]
Horno de microondas	970	2	(970X2)/1.000=1,94	12	1,94×12=23
Refrigerador	171	3	0,51	7.200	3.694
Televisor	98	2	0,20	480	94
Calefactor eléctrico	1200	4	4,80	100	480
Hervidores de agua	2100	3	6,30	12	76
DVD	13	2	0,03	480	12
Total			13,78		4.379

En la tabla anterior se puede observar que la potencia de un hervidor de agua es de 2.100 W y la de un refrigerador es de 171 W, sin embargo el consumo de energía del refrigerador es 3.700 kWh/año y el del hervidor eléctrico sólo llega a los 75 kWh/año, esto se debe al tiempo de uso de cada equipo.

6.4 Distribución del consumo de energía eléctrica

Hasta esta etapa se ha determinado el consumo de energía anual de los sistemas de iluminación, los equipos computacionales y otros equipos (refrigeradores, hornos de microondas, hervidores eléctricos, etc). El siguiente paso es determinar que parte del total consumen estos sistemas y equipos, a esto se le denomina matriz de consumo de energía. Para realizar esto es recomendable realizar un gráfico como el del siguiente ejemplo.

FIGURA 6.5 Ejemplo de matriz del consumo de energía.

TOTAL ESTIMADO: 37.504 kWh/año

Conociendo los Sistemas Consumidores de Energía Térmica¹

Objetivo:

Al final de esta sección será capaz de identificar las fuentes de energía y los sistemas utilizados para calefaccionar y producir aqua caliente sanitaria en el establecimiento.

7.1 Agua Caliente Sanitaria (ACS)

7.1.1 Conceptos básicos

Calentadores a combustible (calderas): es un dispositivo o aparato encargado de calentar agua, a través del calor generado por la combustión de combustibles como gas, petróleo, leña, etc (Figura 7.1).

Termos eléctricos: son estanques donde se almacena y calienta el agua a través de la energía eléctrica. Estos son capaces de contener un volumen de agua que varía entre los 15 y 1.000 litros (Figura 7.2).

Aislación térmica: son materiales utilizados para evitar pérdidas de calor, especialmente en las cañerías donde se transporta el agua caliente sanitaria, calderas y termos eléctricos. Ejemplos de estos materiales son lanas de minerales y vidrio, entre otros (Figura 7.3).

Paneles solares térmicos: son equipos que utilizan la radiación solar para calentar el agua, que posteriormente es almacenada en contenedores cilíndricos. Estos no deben confundirse con los paneles fotovoltaicos los cuales transforman la energía solar en eléctrica (Figura 7.4).

FIGURA 7.1 Tipos de calderas

FIGURA 7.3 Aislación de cañería

FIGURA 7.2 Tipos de termos eléctricos

FIGURA 7.4 Panel solar térmico

Cañería

¹ Es la energía utilizada para producción de calor, que por lo general resulta de la combustión de gas, petróleo, entre otros.

Termostato: es un dispositivo de control que inicia o detiene el proceso de calentamiento de agua en las calderas y termos eléctricos, en función de la temperatura del agua.

7.1.2 Consumidores de agua caliente sanitaria

Es importante identificar donde se utiliza el ACS, el tipo de uso y si este es intensivo o no. Para realizar todo lo anterior se recomienda elaborar una tabla como la del siguiente ejemplo.

TABLA 7.1. Ejemplo de como organizar la información del ACS

	SISTEMAS CONSUMIDORES					
Recinto	Lavamanos	Duchas	Equipos de Cocina	Lavaplatos	Lavandería	Uso Intensivo
Sala 1						
Sala 2	X					Bajo
Sala 3						
Sala 4	X					Bajo
Sala 5						
Cocina			X	X	X	Alto
Comedor	X					Bajo
Gimnasio	X	X				Alto
Dirección	X					Bajo
Biblioteca	X					Bajo
Sala multimedia						
Sala de reuniones						

7.1.3 Sistemas de producción y distribución

Sistemas de producción y acumulación

A continuación se muestra un ejemplo de cómo organizar la información recolectada de los sistemas de ACS.

TABLA 7.2 Ejemplo de como recopilar la información de los estanques

FORMA DE PRODUCCIÓN	UBICACIÓN	CANTIDAD	VOLUMEN (Its)	MODO DE CONTROL	TEMPERATURA DE CONTROL	TIENE O NO TIENE AISLACIÓN
Calefón	Cocina	2	15	No aplica	No aplica	No aplica
Termos eléctricos	Baños	3	60	Termostatos	70°C	Sí

Observación: sólo calderas, paneles solares y termos eléctricos pueden tener sistemas de acumulación de agua (a través de estanques), y no así los calefones, ya que estos calientan el agua para su consumo inmediato. Pueden existir estanques de acumulación, si este es el caso, se recomienda obtener: volumen (litros), tipo y temperatura de control y tipo de aislación.

Sistemas de distribución

Una vez que se genera el agua caliente en los sistemas de producción, debe ser distribuida a los diversos puntos de consumo, a través de cañerías. En este proceso existe una disminución de la temperatura del agua, esto por las pérdidas asociadas a las grandes longitudes o a la falta de aislación en las cañerías.

TABLA 7.3 Ejemplo de sistemas de distribución.

TIPO DE CAÑERÍA	UBICACIÓN	LARGO DE LAS CAÑERÍAS (m)	TIENE O NO TIENE AISLACIÓN
Cobre	Interiores	20	Sí
Cobre	Exteriores	60	No

7.2 Calefacción

7.2.1 Conceptos básicos

Calefactores eléctricos: dispositivos que producen calor a partir del uso de energía eléctrica. Su rango de potencia varía entre 500 y 2000 W (ver figura 7.5).

Radiadores: dispositivos que normalmente usan agua caliente para elevar la temperatura en un lugar determinado (oficina, biblioteca, sala de clases, etc.). Estos Forman parte de un sistema de calefacción centralizada (ver figura 7.6).

Estufas: dispositivos encargados de producir y emitir calor. Esto puede ser por la combustión de gas, petrolero, kerosén (parafina), leña etc. Estas pueden ser fijas o móviles (ver figura 7.7).

FIGURA 7.5 Tipos de calefactores eléctricos.

FIGURA 7.6 Tipos de radiadores

FIGURA 7.7 Tipos de estufas

7.2.2 Recintos calefaccionados y sistemas de calefacción

Es importante identificar los recintos calefaccionados, los sistemas de calefacción asociados y el tiempo de uso de estos últimos. Para realizar todo lo anterior se recomienda elaborar una tabla como la del siguiente ejemplo.

TABLA 7.4 Ejemplo de como organizar la información de los sistemas de calefacción.

	SISTEMAS CONSUMIDORES						
INSTALACIÓN	CALEFACTORES ELÉCTRICOS	RADIADORES	ESTUFAS PORTÁTILES	ESTUFAS FIJAS	OTRO	HORAS ANUALES DE USO	
Sala 1							
Sala 2	X	X				200	
Sala 3							
Sala 4							
Sala 5							
Cocina							
Comedor		X				500	
Gimnasio							
Dirección	Χ	X				800	
Biblioteca	X	X				800	
Sala multimedia							
Sala de reuniones							

7.2.3 Sistemas de producción y distribución

Sistemas de producción

El siguiente formulario ayudará a determinar y caracterizar los sistemas de calefacción.

TABLA 7.5 Ejemplo de como caracterizar los sistemas de producción.

FORMA DE PRODUCCIÓN	UBICACIÓN	CANTIDAD	TIPO DE COMBUSTIBLE	POTENCIA	SISTEMA DE CONTROL
Caldera centralizada	Sala Calderas				
Estufas fijas	Sala de clases	4	Leña	No aplica	Manual
Estufas portátiles	Oficinas				
Calefactores eléctricos	Dirección		No aplica		

Sistemas de distribución

Una vez que se genera el agua caliente en los sistemas de producción, debe ser distribuida a los diversos puntos donde se desea calefaccionar, a través de cañerías, para su posterior circulación en radiadores.

TABLA 7.6 Ejemplo de como caracterizar los sistemas de distribución.

TIPO DE CAÑERÍA	UBICACIÓN	CANTIDAD DE	LARGO DE LAS	¿TIENE O NO TIENE
(COBRE O PVC)		RADIADORES	CAÑERÍAS (mt)	AISLACIÓN?
Cobre	Interiores	10	200	No

7.2.4 Opciones de Eficiencia Energética para ACS y Calefacción

1. Aislación de estanques.

Para determinar si es necesario utilizar aislación térmica en los estanques de agua caliente; tóquelos, si percibe que estos están calientes; aíslelos, ya que al estar estos calientes significa que están liberando calor al ambiente. Esta es una medida sencilla de implementar y que no requiere de una elevada inversión (ver figura 7.8).

2. Programación de termostatos.

- a) Verifique a qué temperatura está programado el termostato de su caldera y/o termo eléctrico. En el caso acumuladores de ACS, si esta es superior a 60 °C, reprográmelo a 60°C, debe comprobar que en todos los puntos de consumo (lavaplatos, duchas, lavamanos, etc.) la temperatura del agua es la adecuada, de lo contrario, podrá ser necesario reprogramar el termostato hasta obtener una temperatura requerida.
- b) En el caso de calefacción central, el termostato ambiente no debería sobrepasar los 20 a 22°C.

3. Aislación de cañerías.

Si las cañerías que componen el sistema de distribución de agua caliente no tienen aislación térmica, entonces aíslelas. Las pérdidas de energía se incrementan con el largo de las cañerías (ver figura 7.9).

4. Aislación del Edificio

Con el fin de reducir pérdidas innecesarias de calefacción, evite la apertura de puertas y ventanas en forma excesiva; y busque mejorar la aislación de la envolvente del edificio (techos, muros, puertas y ventanas).

5. Revisar sistemas de control

Se debe asegurar que el control de radiadores y otros equipos (válvulas, termostatos, entre otros) funcionan en forma adecuada, de lo contrario se puede desperdiciar energía o no suministrar la cantidad requerida.

FIGURA 7.8 Ejemplo de Eficiencia Energética para ACS y Calefacción.

FIGURA 7.9 Ejemplo de Eficiencia Energética en cañerías.

Agua Potable

Objetivo:

Al final de esta sección será capaz de determinar donde es utilizada el agua potable, además identificará medidas que conduzcan a utilizar el agua de manera más eficiente.

8.1 Identificando los puntos de consumo

Para organizar la información de los lugares donde es utilizada el agua, se recomienda realizar una tabla como la que aparece a continuación.

TABLA 8.1 Ejemplo de cómo organizar la información del consumo de agua

RECINTO	SISTEMA	DESCRIPCIÓN DEL SISTEMA
Cocina	Lavaplatos	El flujo de agua se activa de forma manual.
Áreas verdes	Riego	Este es realizado mediante manguera, generalmente por inundación.
Baño	Inodoros (WC) (Tasa y Estanque)	Mediante un dispositivo que realiza descargas cada 4 minutos.
Baño	Urinario	El agua fluye permanentemente durante la jornada escolar.
Baño	Lavamanos	El flujo de agua se activa de forma manual.
Camarines	Duchas	El flujo de agua se activa de forma manual.

8.2 Medidas para utilizar el agua eficientemente

8.2.1 Conceptos básicos

Limitador de Caudal: su función es reducir la cantidad de agua que sale por el grifo. Dependiendo de la presión de agua, estos artefactos debieran ahorrar entre 40 y 60% de agua. Su desventaja es que si la presión de la red es muy baja, su funcionamiento puede que no sea el óptimo. Es posible aplicar limitadores de caudal a cualquier llave (lavamanos, lavaplatos, bidet y ducha).

Aireadores y Perlizadores: es un sistema de ahorro de agua, que mezcla el agua con aire generando gotas en forma de perla, lo que permite ahorrar agua dando la impresión que la fuerza del chorro no ha disminuido. Además por añadidura se salpica menos agua, lo que hace más cómodo el uso de estos dispositivos. La reducción que generan en algunos casos puede ser regulable o dependiendo del dispositivo se puede fijar entre 2 a 8 litros por minuto. Se recomienda que dada la alta dureza de las aguas chilenas, se realice una limpieza mensual de los aireadores.

Grifería con Temporizadores: los temporizadores por lo general se aplican a llaves individuales o monomando. Funcionan a través de un pulsador (presionando) y cortan el flujo del agua en un tiempo determinado (depende del modelo y eventualmente de la regulación). Su utilización en los recintos domésticos es poco habitual y son usados con regularidad en recintos públicos y oficinas para evitar la pérdida de agua por inconsciencia u olvido del usuario.

Inodoros Doble Descarga: Se han realizado diversos estudios conducentes a optimizar y minimizar la utilización de agua en los inodoros. Una de estas mejoras dice relación con la incorporación de sistemas de doble descarga que le entregan al usuario la opción de escoger entre 2 volúmenes distintos de descarga de agua (6 – 9 litros o 3 – 4 litros) dependiendo el uso (líquidos o sólidos).

Riego Tecnificado:

Riego por aspersión, en donde el agua se arroja al área verde en forma de lluvia de pequeñas gotas mediante aspersores, que son dispositivos que deben distribuirse uniformemente en el área a regar. Dependiendo de la superficie de terreno a regar, se utilizaran aspersores (giratorios y de mayor alcance) o difusores (fijos). La eficiencia de este sistema está vinculada a factores tales como localización de los aspersores, numero de aspersores, entre otros; Riego por goteo, el cual consiste en un tubo plástico que tiene una pieza interior con orificios aproximadamente cada 40 cm, por los que sale el agua gota a gota. Este método no tiene el problema de la evaporación y disminuye la proliferación de malas hierbas. Exige poca presión de agua y es de fácil implementación; Riego por exudación, la cual se parece a la técnica por goteo, pero en este caso la manguera está provista de muchos poros (orificios más pequeños que en el riego por goteo y a la vez en mayor cantidad), entonces cuando la manguera se llena de agua empieza a "sudar". Esta técnica permite mayores ahorros de agua; Riego automatizado, el cual cuenta con sensores de lluvia y humedad, que sirven para minimizar los riegos innecesarios, con el consiguiente aprovechamiento eficiente del recurso.

8.2.2 Medidas que requieren una baja o nula inversión

Eliminar goteras

Por causa de pequeñas goteras se pueden desperdiciar aproximadamente 1.000 litros de agua al año (1 m³). Si suponemos que nuestro establecimiento tiene 100 goteras estaremos perdiendo 100 m³ de agua. Es por esto que la primera medida para utilizar el agua de manera eficiente es eliminar las goteras.

Rieac

Cuado sea necesario regar el establecimiento educacional, pídale al encargado que lo realice a primera hora de la mañana (7:00 hrs.) o al anochecer (20:00 hrs.), evitando el sistema de inundación del sector que se esta regando, ya que el exceso de agua se pierde por evaporación o por infiltración a las capas subterraneas.

Además no sólo podemos establecer la eficiencia de acuerdo a la modalidad de riego, sino que también de acuerdo a las especies que tenemos en el jardín. Un ejemplo claro se deriva de la habitual utilización de césped en la mayoría de los jardines, que sin duda es una de las coberturas vegetacionales menos eficientes en cuanto a la eficiencia hídrica. Se estima que los caudales necesarios para mantener 1m² de césped son de mínimo 6 litros diarios de agua en verano y 4 en primavera y otoño y prácticamente nulos en invierno (pensando en un clima mediterráneo semiárido, similar al de Santiago).

Un jardín eficiente debe considerar especies xerófitas (de climas semiáridos) o autóctonas. Esto se explica porque dichas especies crecen en forma natural en los lugares en donde se localizan, sin necesidad de riego extra y alimentándose de las aguas lluvia.

Cierre de la llave de paso

Si usted observa que la presión del agua en el establecimiento educacional es excesiva, cierre levemente la llave de paso general. Esto también es aplicable de manera local en las duchas, lavamanos y lavaplatos.

Inodoros (WC)

Sistemas antiguos utilizan en promedio 12 litros por descarga. Los sistemas actuales poseen doble descarga y además usan menos agua por descarga, 6 litros en promedio. Como una opción de utilizar menos agua, coloque botellas (2 litros) llenas de agua en las cisternas de los inodoros, con ello disminuirá el consumo en 2 litros por cada descarga.

8.2.3 Medidas que requieren una mayor inversión

La siguiente tabla muestra medidas aplicables para utilizar el agua de manera eficiente.

TABLA 8.2 Medidas que requieren inversión.

SISTEMA	DESCRIPCIÓN DEL SISTEMA ACTUAL	MEDIDA
Lavaplatos	El flujo de agua se activa de forma manual.	Instalar aireadores o perlizadores de agua en las llaves. Esto reducirá el consumo de agua en un 40% aprox.
Riego	Este es realizado mediante manguera, generalmente por inundación.	Este sistema puede ser cambiado por uno de riego automático, que reducirá el consumo de agua entre un 50 y 60% en el riego.
Baño. Inodoro (WC)	Mediante un dispositivo que realiza descargas cada 4 minutos	Este sistema puede ser remplazado por inodoros individuales con doble descarga.
Urinario	El agua es utilizada permanentemente durante la jornada escolar	Este sistema puede ser remplazado por urinarios individuales con descarga temporizada, con esto el consumo de agua puede disminuir hasta en un 45%
Lavamanos	El flujo de agua se activa de forma manual.	Instalar aireadores o perlizadores de agua en las llaves, esto reducirá el consumo de agua en un 40% aprox.
		Instalar llaves temporizadas (estas descargan una cantidad de agua fija cuando se usan). El consumo de agua puede disminuir hasta en un 60%.
		Se recomienda aplicar esta medida cuando la instalación de aireadores o perlizadores no sea posible
Duchas	El flujo de agua se activa de forma manual.	Instalar aireadores o perlizadores de en las duchas, o cambiarlas por artefactos que tengan dicha tecnología incorporada. Esto reducirá el consumo de agua en un 40% aprox.
		Instalar llaves temporizadas (estas descargan una cantidad de agua fija cuando se usan). El consumo de agua puede disminuir hasta en un 60%.

En conjunto, todas las medidas propuestas pueden disminuir el consumo de agua potable entre un 40 y 50%.

Fichas Resumen

Objetivo:

La ficha resumen es un instrumento útil para registrar y organizar la información más importante derivada de la aplicación de la Guía de Autodiagnóstico. En ella se deben ingresar datos básicos del establecimiento y otros datos como lo son la distribución del uso de energía y opciones de eficiencia energética.

FIGURA 9.1 Tabla resumen diagnóstico energético.

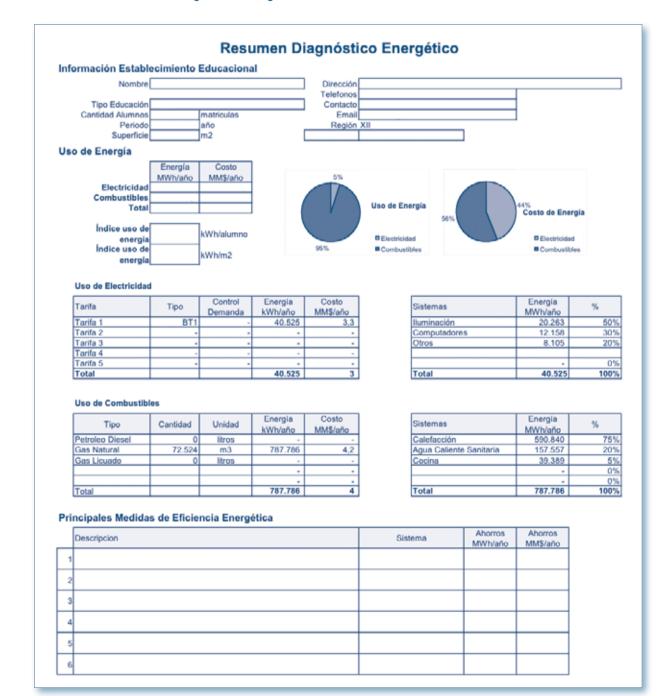


FIGURA 9.2 Tabla resumen diagnóstico hídrico.

		Resun	nen Diagno	ostico	Hídrico			
mación Estableci	miento Educaci	ional						
Nombre]	Dirección			
					Teléfonos			1
Tipo Educación				l	Contacto			1
dad de Alumnos		Matriculas			Email			1
Periodo Superficie		Año Región					1	
Superiicie		1						
del Agua								
	Agua	Costo	1			Uso del	Agua	
	m3/año	\$/año	1					
Baños			4					
Camarines			-			26%	30%	
Cocina			-				2010	III Baños
Riego			-					■ Camarin
Total			1		41	%		□ Cocina
Indianuss		m2/						□ Riego
Indice uso del Agua		m3/ alumno						
Indice uso		aumno				40%		
del Agua		m3/m2						
sumos Estimados	s por Sector y A	vrtefacto						
	s por Sector y A	unidad	Consumo Estandar		Artefactos stalados	Agua m3/año	%]
sumos Estimados			Consumo Estandar		Artefactos stalados	Agua m3/año	%]
Sector						Agua m3/año 1.102	% 11,4%	
Sector	Artefacto	unidad	Estandar				11,4% 13,5%	
Sector	Artefacto Lavamanos	unidad It / min	Estandar 12			1.102	11,4%	
Sector	Artefacto Lavamanos Inodoros Urinarios	t / min t / desc t / desc	Estandar 12 6 4			1.102 1.302 504	11,4% 13,5% 5,2%	
Sector Baño Camarines	Artefacto Lavamanos Inodoros	t / min	Estandar 12 6			1.102 1.302	11,4% 13,5%	
Sector Baño	Artefacto Lavamanos Inodoros Urinarios Duchas	t/min t/desc t/desc t/min	12 6 4			1.102 1.302 504 3.872	11,4% 13,5% 5,2% 40,0%	
Sector Baño Camarines Cocina	Artefacto Lavamanos Inodoros Urinarios	t / min t / desc t / desc	Estandar 12 6 4			1.102 1.302 504	11,4% 13,5% 5,2%	
Sector Baño Camarines	Artefacto Lavamanos Inodoros Urinarios Duchas Lavaplatos	t/min t/desc t/desc t/min t/min	12 6 4 20			1.102 1.302 504 3.872	11,4% 13,5% 5,2% 40,0%	
Sector Baño Camarines Cocina Riego	Artefacto Lavamanos Inodoros Urinarios Duchas	t/min t/desc t/desc t/min t/min	12 6 4			1.102 1.302 504 3.872 387	11,4% 13,5% 5,2% 40,0% 4,0%	
Sector Baño Camarines	Artefacto Lavamanos Inodoros Urinarios Duchas	t/min t/desc t/desc t/min	12 6 4			1.102 1.302 504 3.872	11,4% 13,5% 5,2% 40,0%	
Sector Baño Camarines Cocina Riego	Artefacto Lavamanos Inodoros Urinarios Duchas Lavaplatos Lave + mangue	tt/min tt/desc tt/desc tt/min tt/min tt/min	12 6 4 20			1.102 1.302 504 3.872	11,4% 13,5% 5,2% 40,0%	
Sector Baño Camarines Cocina Riego	Artefacto Lavamanos Inodoros Urinarios Duchas Lavaplatos Lave + mangue	t/min t/desc t/desc t/min t/min t/min	12 6 4 20		stalados	1.102 1.302 504 3.872 387 2.517 9.684	11,4% 13,5% 5,2% 40,0% 4,0% 26,0% 100,0%	Ahorro
Sector Baño Camarines Cocina Riego	Artefacto Lavamanos Inodoros Urinarios Duchas Lavaplatos Lave + mangue	tt/min tt/desc tt/desc tt/min tt/min tt/min	12 6 4 20		stalados	1.102 1.302 504 3.872 387	11,4% 13,5% 5,2% 40,0% 4,0% 26,0% 100,0%	
Sector Baño Camarines Cocina Riego Total	Artefacto Lavamanos Inodoros Urinarios Duchas Lavaplatos Lave + mangue	t/min t/desc t/desc t/min t/min t/min	12 6 4 20		stalados	1.102 1.302 504 3.872 387 2.517 9.684	11,4% 13,5% 5,2% 40,0% 4,0% 26,0% 100,0%	
Sector Baño Camarines Cocina Riego	Artefacto Lavamanos Inodoros Urinarios Duchas Lavaplatos Lave + mangue	t/min t/desc t/desc t/min t/min t/min	12 6 4 20		stalados	1.102 1.302 504 3.872 387 2.517 9.684	11,4% 13,5% 5,2% 40,0% 4,0% 26,0% 100,0%	
Sector Baño Camarines Cocina Riago Total	Artefacto Lavamanos Inodoros Urinarios Duchas Lavaplatos Lave + mangue	t/min t/desc t/desc t/min t/min t/min	12 6 4 20		stalados	1.102 1.302 504 3.872 387 2.517 9.684	11,4% 13,5% 5,2% 40,0% 4,0% 26,0% 100,0%	
Sector Baño Camarines Cocina Riego Total cipales Medidas d	Artefacto Lavamanos Inodoros Urinarios Duchas Lavaplatos Lave + mangue	t/min t/desc t/desc t/min t/min t/min	12 6 4 20		stalados	1.102 1.302 504 3.872 387 2.517 9.684	11,4% 13,5% 5,2% 40,0% 4,0% 26,0% 100,0%	
Sector Baño Camarines Cocina Riago Total	Artefacto Lavamanos Inodoros Urinarios Duchas Lavaplatos Lave + mangue	t/min t/desc t/desc t/min t/min t/min	12 6 4 20		stalados	1.102 1.302 504 3.872 387 2.517 9.684	11,4% 13,5% 5,2% 40,0% 4,0% 26,0% 100,0%	
Sector Baño Camarines Cocina Riego Total ipales Medidas d	Artefacto Lavamanos Inodoros Urinarios Duchas Lavaplatos Lave + mangue	t/min t/desc t/desc t/min t/min t/min	12 6 4 20		stalados	1.102 1.302 504 3.872 387 2.517 9.684	11,4% 13,5% 5,2% 40,0% 4,0% 26,0% 100,0%	
Sector Baño Camarines Cocina Riego Total cipales Medidas d	Artefacto Lavamanos Inodoros Urinarios Duchas Lavaplatos Lave + mangue	t/min t/desc t/desc t/min t/min t/min	12 6 4 20		stalados	1.102 1.302 504 3.872 387 2.517 9.684	11,4% 13,5% 5,2% 40,0% 4,0% 26,0% 100,0%	Ahorro \$/año

Plan de Acción

Objetivo:

Al final de esta sección será capaz de clasificar las opciones de eficiencia energética identificadas, en aquellas que son aplicables en el corto plazo y en el largo plazo. También conocerá las principales etapas de un programa de gestión energética.

10.1 Diferenciando las medidas identificadas

Hasta ahora se han identificado diversas medidas que conducen a utilizar recursos energéticos de una manera eficiente. El siguiente paso, es crear a partir de estás medidas un plan de acción que nos permita diferenciarlas, en el sentido de determinar en que plazos son aplicables y las que requieren una mayor o menor inversión.

Las medidas identificadas se pueden diferenciar en aquellas que son de gestión y en las que requieren una actualización o recambio de tecnología.

Medidas de gestión: por lo general tienen una baja o nula inversión. Un ejemplo en la aplicación de esta guía es la de la reprogramación del administrador de energía en los equipos computacionales.

Medidas que requieren actualización de tecnología: son aquellas en las que se identifica una tecnología eficiente y esta remplaza a la tecnología actual (menos eficiente). Por lo general estas medidas requieren de una mayor inversión. Un ejemplo en la aplicación de esta guía es el recambio de las luminarias.

La siguiente tabla muestra un ejemplo de cómo clasificar las medidas identificadas

Tabla 10.1Clasificación de las medidas de Eficiencia Energética

SISTEMA	MEDIDA	¿ES DE GESTIÓN O SE REQUIERE UNA ACTUALIZACIÓN DE TECNOLOGÍA?	¿INVERSIÓN ALTA, MEDIA O BAJA?	¿SE APLICA EN EL CORTO MEDIANO O LARGO PLAZO?
lluminación	Recambio de luminarias ineficientes	Actualización de tecnología	Media	Mediano plazo
Equipos computacionales	Reprogramación del administrador de energía	Gestión	Baja	Corto plazo
Otros equipos	No aplica	No aplica	No aplica	No aplica
Calefacción	Aislación térmica de cañerías	Actualización de tecnología	Media	Mediano plazo
Agua caliente sanitaria	Aislación térmica de cañerías	Actualización de tecnología	Media	Mediano plazo
Envolvente	Mejorar aislación de la techumbre	Actualización de tecnología	Alta	Largo plazo

10.2 Programa de gestión energética.

El programa de gestión energética es un conjunto de medidas que busca reducir los costos asociados al consumo de energía en el tiempo y el cual es un proceso que permanece en el tiempo. Se recomienda seguir los siguientes pasos:

1. Decisión

Obtenga apoyo de la municipalidad o de los sostenedores. Sin ello, no vale la pena iniciar ningún movimiento para incorporar gestión energética en el establecimiento educacional. Identifique motivaciones y expectativas.

2. Información

Establezca un sistema de información que sea simple, de bajo costo y útil. Identifique a todas aquellas personas interesadas. Comparta la información.

3. Metas

Establezca metas para la gestión energética, como por ejemplo: aumentar precisión de las informaciones y reducir el consumo específico. Las metas deben tener plazo para ser controladas y deben ser coherentes.

4. Acciones internas

Comience por sus instalaciones: revise condiciones de mantencion, realice comparaciones con el proyecto original, revise equipos utilizados sin necesidad, realice programación de trabajos, integre a los operadores y comunique resultados.

5. Acciones externas

Busque apoyo de proveedores, contrate consultores externos para la realización de auditorias energéticas, priorice proyectos de inversión, contrate ESCOs y/o contratistas para implementar proyectos.

6. Control

Después de implementar cada medida, establezca criterios de control y medición. Establezca sistemas de medición y verificación de ahorros.

7. Nuevas metas

Evalué si las metas establecidas fueron alcanzadas. Es importante entender los motivos de éxito y/o fracaso de las medidas implementadas. Busque soluciones y mejoras. Defina nuevas metas.

El proceso de eficiencia energética es un proceso de mejora continua, y por lo tanto se recomienda crear un comité de acción que vele por el seguimiento de este tipo de programas.

Bibliografía

- [1] Manual de Aplicación: Reglamentación Térmica, MINVU, 2006
- [2] Reglamento de Instalaciones Térmicas en los Edificios en Chile, Cámara Chilena de Refrigeración y Climatización, 2007
- [3] www.mart.cl, sitio Web de donde es posible descargar el Manual de Aplicaciones de Reglamentación Térmica.
- [4] www.ahorraahora.cl , sitio Web de donde se puede obtener información para ahorrar energía.
- [5] www.ppee.cl, sitio Web del Programa País Eficiencia Energética.
- [6] http://www.innovacionenergetica.cl/index.php

